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ON THE RESONANCE CONCEPT IN SYSTEMS OF LINEAR AND
NONLINEAR ORDINARY DIFFERENTIAL BQUATIONS

Rahmi Ibrahim Ibrahim Abdel Karim

Theorems on the resonance cases for linear and nonlinear

ordinary differential equations of the first to the nth

order are derived and proved in detail, using an earlier

report by the same author as partial basis. Minimal

orders of magnitude of the solutions and their derivatives

are given and methods for the formation of examples, with

sample calculations in matrix notation, are described.
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PART I

THE RESONANCE CONCEPT IN SYSTEMS OF n LINEAR ORDINARY
DIFFERENTIAL BZUATIONS OF THE FIRST ORDER

Section 1. Problem Formulation, Principal Results

R.Iglisch investigated the resonance concept in linear ordinary differen-

tial equations of the second order (Bibl.5). These considerations will be ex-

tended here to systems of n ordinary linear differential equations of the first

order which will be written in matrix form with L(t) as the sought vector:

d; ()• ~) (1)
di

where the square (for example, real) matrix 21(t) is to be continuous in t and

periodic with the period P, i.e., all n3 elements alk(t) are continuous functions

in t, periodic with P; the (for example, also real) vector f(t) is assumed as

also being continuous and periodic with P:

(I+ P) = (t); |(t + P) =f(t) (2)

The homogeneous system conjugate to eq.(l) reads

d ,, (3 )
while the ,,adjoint" system is

d,
(4)

where the superscript T is to denote the transition to the transposed matrix.

Definition 1. in the inhomogeneous differential equation system (1), the

resonance case is present if the adjoint system (4) has at least one solution

vector 3(t) periodic with P, for which

pf (t)(I)di= C+0 (5)

5



is valid.

In Section 4, we will prove:

Theorem 1. In the resonance case, any solution vector r(t) of eq.(1)

assumes arbitrarily large values, increasing without bounds with increasing t.

Definition 2. In eq.(l), we have the principal case if eq.(4) has no L8

solution vector 1(t) periodic with P.

In Section 5, we will prove:

Theorem 2. In the principal case, solutions r(t) of eq.(l), remaining

restricted for all t, are in existence, for example, the uniquely existing

solution periodic with P.

Definition 3. Equation (1) represents the exceptional case if eq.(4) does

have solution vectors 1(t) periodic with P but if the following relation applies

to all these solutions periodic with P:

f &T (t) f(t).i =0. (6)

In Section 6, we will prove:

Theorem 3. Even in the exceptional case, restricted solutions r(t) of

eq.(l) exist for all values of t, for example, solutions periodic with P but no

longer uniquely defined.

Sections 2 and 3 contain auxiliary considerations on the inhomogeneous

system (1), specifically on the correlation between the homogeneous system (3)

and the adjoint system (4). In this case, the periodicity stipulation (2) will

be introduced only in Section 3.

Many of the results are already known, but they are here derived in a

manner that requires no specialized knowledge.
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Section 2. Auxiliary Considerations on Systems of Linear Differential
Equations of the First Order

In this Section, the periodicity stipulation (2) will not be used.

Let hi (t), *.., ta (t) be a linear independent solution system (fundamental

system) of eq.(3) at the point to, which can be combined into the solution

matrix
(7)•) ( = (N O),.. o

We then have
Det 9 (t) o) . (8)

Theorem _4. From eq.(8) it follows that

Y(t) = Det D)(t) #*0 (9)

for all values of t.

Proof. If the conjugates [subdeterminants with correct sign (-1) I+V for

the element ytv(t) in eqs.(7) or (9) are denoted by Y1 v(t) and putting

ak=o for ik,(10),1 for i=k, (0

the following result will be obtained, taking eq.(3) into consideration and

denoting the differentiation to t by a prime:
dY Y - y:. V. ask y£a ,%,. Ys. = a.,A,, I' = ji°,
sit A. ,. .

and thus 12
YM)= Y(1) exp( f (a, + a,, + a.,) di).

From this, theorem 4 follows directly.

Theorem 5. In addition to eq.(7), the expression

V = 7)() -. (11)

at an arbitrary constant matrix (, with a determinant C differing from zero,

represents a fundamental system of solutions of eq.(3).
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Proof. Equations (7) and (3), together with

•)=(' .. ' (12)

can be combined into

From this, we can calculate

(••'= •)'( = U = U(9)).

This means that each 9 is a solution system of eq.(3).

That we also have det(VS) t 0, follows from

det (1)9) = y.C #e.

Theorem 6. The vectors

.......................... ~.(14)I(Yi(s),

which can be combined into the matrix

80(H = ( .b(1)) (15)

form a fundamental system of solutions of eq.(4).

Proof. Equation (15) indicates directly that

.r.Z?=U. (16)

i.e., that it is the unit matrix. On introducing the reciprocal matrix Vf- we

can then also write
" 3•-' . (J-,) T . (17)

From eqs.(16) or (17) it follows directly that

Z = det.3 # 0.

The statement that 3 is the solution matrix of eq.(4) is derived as follows:

According to eq.(16), we have

8



i.e., with 0q.(13) 10

so that 3= -i ~ (18)

which coincides with eq.(4).

Thus, theorems 5 and 6 yield directly:

Theorem 7. A general fundamental system of solutions of eq.( 4 ) is repre-

sented by the matrix

so: =. - . (19)

at arbitrary constant matrix ( with a determinant C differing from zero.

Denoting d. _ (t),(20)

and di

- t (21)

the following is valid for two arbitrary vectors h(t) and 3(t):

8
T L(t)) - (L*())r-o d d( ) (22)

and d
d i (gjTS) (23)

Therefore, the (expanded) Lagrange identity
d

r•) W o T = . ) (24)

is valid for the solution vectors b and • of eqs.(3) and (4), respectively.

Analogously, the following is valid for the solution vectors of eqs.(1)

and (4):
d 1 )=.Tf d (,T j)=T (25)

Section 3. Systems of Linear Differential Equations with
Periodic Coefficients

In this Section, the periodicity stipulation (2) is essential.

Theorem 8. The homogeneous systems (3) and (4) have the same number of 0
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linearly independent solutions periodic with P (0 • p • n).

Proof*. Let P be the number of linearly independent solutions of eq.(3),

periodic with P. It is merely necessary to demonstrate that eq.(4) has exactly

P linearly independent solutions that are periodic with P, since the conclusion

can be reversed in view of the fact that eq.(3) is the adjoint system to eq.(h).

Case 1. Let P = n. Here, the entire matrix ff•t) is periodic with P so

that also the matrix 3(t) according to eq.(15) will be periodic.

Case 2. Let 0 < P < n. Assume that the bv(t), with v = 1, 2, ... , ', iil

are periodic with P. Then, the following is valid for any arbitrary point tj:

I,,. (t)1,:1P -_ u(, 4 P) - %.t(t) * o for p = eL 4 1.... ,. (26)

If the equal sign were present in eq.(26), the periodicity of this hu(t) with

the period P would follow from eq.(3) with consideration of eq.(2). In the

following, let tz be an arbitrarily selected but then retained point. Integra-

tion of the first equation in the system (24) over ti and tj + P will yield,

for each k = 1, 2, ... , n,

•A(')l• P I' (t) -- 0 for v =1.2 1, 2 . (27)

These are n linear homogeneous equations which have at least the p linearly in-

dependent solutions hv(tj) for v = 1, 2, ... , P. It will be demonstrated that

no further solution vector Ui, linearly independent of this, can exist. Con-

versely, let us assume that, for such a ul, the following is also valid

T P 0(28)& (I) 1:: ",, = o0 2

Then, let us define a vector U(t) from eq.(3):

du .%(t) with u(t1)=U1. (29)
dt

* By R.Iglisch.
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For this vector u(t), the first equation of the system (24), by integration

over ti and tj + P for k = 1, 2, #.., n, will yield

+(', 4- P) .(t, 4- P) - &r(l) U (t.,) = 0

and, after subtraction of eq.(28),

6,"(i, + P) [U(t, + P) - u(I')) = 0.

This represents a linear homogeneous system of equations with a determinant

differing from zero; consequently,

u (t, + P) = u (W)

must be valid from which, because of eqs.(29) and (2), the periodicity of u(t)

with P is obtained. Consequently, because of eq.(26), ui = u(t, ) is linearly

dependent on hN(ti), ..- , 0 (t,).

Thus, we know that the system of equations (27) has exactly o linearly in-

dependent solutions. Therefore, the matrix

has the rank n - P. By suitable numeration, it becomes possible that exactly

are linearly independent. The remaining of these
*ti t)

vectors can be linearly expressed by these vectors:

,(S) [I.+"P Z ,..u(S)I'.+P for p=, - • + ... (30• -, (30)

Consider now the vectors
.)fr m=,2 (31)

2 c.., &.(9) for M--+i.

6-1

Since /12

Det (&-(t). :(t)) = Det ((). ()) + 0

it follows that the n vectors (31) are linearly independent solutions of eq.(4)

for all t (see also theorem 4). The 3*v(t) with v = 1, 2, ... , n - P, because
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of the linear independence of the vectors

including their linear combinations, are not periodic with P. Conversely, the

uA*(t) with I = n - 0 + 1, ... , n have exactly the-period P, -as-readily seen

from eqs.(30), (4), and (2). This yields the proof for our case 2.

Case 3. Let p = 0. If eq.(4) had a solution periodic with P, also eq.(3)

would have such a solution according to the above statements.

Section 4. The Resonance Case

Pryof for Theorem 1. Thus, let 3(t) be a solution vector of eq.(4) peri-

odic with P, for which eq.(5) is valid.

In contrast to the argument, we make the assumption:

11('€j 5E (32)

for all t and for an arbitrarily selected solution r(t) of eq.(l). An integra-

tion of the first equation in the system (25) between t and t + r, with arbi-

trary positive-whole m and taking eq.(5) into consideration, will yield

ATYt) [1 (1+ m P) -0•()] = M. 1(11. (33)

Because of the periodicity of 3T (t), a restriction of the following form exists

for all t:
Is"(Ol ;5 D. (34)

On the basis of this and from eq.(33), an estimate

D.2EuIXCI. EkMJ!C!.
2D

is obtained. At sufficiently large m, this furnishes a contradiction to eq.(32).

The result can also be formulated as follows:

Theorem 9. In the resonance case, for each solution vector r(t) of eq.(l)
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and for each interval

4; o+.MP (35)

at least one point t* exists for which

f 2Da " (36)

vanishes with C from eq.(5) and D from eq.(34).

Section 5. The Principal Case

In this Section, it is assumed that eq.(4) has no solution 8(t) periodic

with P. First, we will prove:

Theorem 10. If 11 (t), .. e, j.(t) are linearly independent solutions of /13

eq.(4), we have

D()= . #0 t.,au ,. (37)

Proof. If, for a special quantity t = te, we would have D(te) = 0 in

contrast to the argument, then n numbers oil, 02 , ... , a. witha + + CY . > 0

could be so determined that

£ ••r(2 ,+rP) = i m4(Sa)

Putting .-.

we would have

However, according to eqs.(4) and (2), it would follow that

60Y + P) =is()

for all t, in contradiction to the assumption.

Proof of Theorem 2. If r(t) were a solution of eq.(l) periodic with P, an

integration of the first equation in the system (25) between a fixed point t3

and t3 + P would yield

13
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,+ P

r) ( =f (t J(t)dt for v=1.2.. (38)

Since the coefficient determinant of this system of equations, according to

theorem 10, differs from zero, the quantity r(t3) can be uniquely determined

from this. Let us assume that eq.(l), with these initial values at the point t3

is solved, thus yielding a solution vector r(t). It only remains to be proved

that this r(t) is periodic with P. In view of eq.(2), it will then merely be

necessary to determine that, automatically,

I(N + P) = IN (39)

An integration of the first equation of the system (25) over ts and t 3 + P will

yield, for v = 1, 2, ... , n,

'6+P

9(1.+ P) -I(;2 +P) -A:4 .~ -fE 1(t)f Q) dl.
1.

On deducting eq.(38) from this, the linear system of equations will read

; ('6 + P) [I (v. P) - r 0 (Q=o)

with a determinant differing from zero, analogous to eq.(8). This leads to

vanishing of the bracket and thus of eq.(39).

Section 6. The Exceptional Case /14

If eq.(4) has exactly 0 linearly independent solutions 3 1 (t), ... , 10(t)

periodic with P, for which

s+P

f T(t) f (t) dt = o. 1, i2 (41)

is valid, then the determinant (37) will exactly have the rank n - p. Of the

system of equations (38), the first 0 equations (for v = 1, 2, ... , 0) are

automatically satisfied since they contain only zeros. From the remaining

14



equations (38) with v 0 + 1, ... , n, a total of p linearly independent vectors

F(IN ). 4T(I ..... s '() (42)

can be determined, supplemented by the corresponding initial values (42) by

solving eq.(1):

00~I). d•.. 1'W). (W)

That, for each of these ut) (t 1, 2, ... ,

is automatically obtained follows from the system of equations which is derived

analogous to eq.(40):

a,(is + P) [N(t + P) - 4=5)

with a determinant differing from zero. This means that all these ru(t) will

have the period P. Thus, we can make the following statement:

Theorem 11. If eq.(4) has exactly o linearly independent solutions peri-

odic with P, for each of which eq.(6) is valid, then eq.(l) has a 0-parametric

family of solutions periodic with P.

This result agrees with the trivial fact that all solution vectors of

eq.(l) periodic with P are obtained by adding to one of these vectors all solu-

tion vectors of eq.(3) periodic with P.

15



PART 11 /1

THE RESONANCE CASE IN SYSTEM4S OF n NONLINEAR ORDINARY
DIFFE•ETIAL BUATIONS OF THE FIRST ORDER

Section 1. Problem Formulation, Principal Results

As an extension of investigations made by R.Iglisch (Bibl.l), we consider

here the nonlinear differential equation system

dui -= g, (,,., .... ,.; t) + hi,(1) (i =,1. 2., ,(i
dt

which, under introduction of the vectors g*) ......U
j~~hQ) ad 9(u,')=-(:z ::: 2

can be written in the following form:

-w- = (N. t) + W (3)

Let the periodicity assumption

G(U,1+ • = 9(..t). 0( + P)= 4('). ( 4)

be valid. For the functions & , in view of the variable u 1 , let an expansion

in Taylor series up to terms of the second order be possible, and let 4(t), for

example, be continuous.

Assume that a solution uo(t) of eq.(3) periodic with P is known:

du,

Then, at a minor modification of 0(t), we will investigate the solution vectors

u(t) adjacent to uo(t) of the system of equations
d = (u..) + 0(i) +#1W(t) (6)

17



at sufficiently small 1BI; here again, we assume

¶(e + P) =(). (7)

Using /18

U(S) =•(t) +•0) (8)

eq.(6) will be transformed, after subtraction of eq.(5), into

dd-i g() +00) - 9 (us MA +P (t. (9)

Of these, the solutions with small Ir(t)! at 101 will be investigated.

As will be demonstrated in Section 2 where a transformation of eq.(9) is

to be made, the role of the homogeneous linear system of equations* is taken

over by the system
do (10)
di

with the matrix (i, k 1, 2, ... , n):

lgi (U. -t), a No. t0 PON,) 0,,0l t)

( a) = auk(t)) (-, g.,,. )) ( a(l., , (,, . . .. ,

Obviously,

9 (t + P) - 91). (12)

The homogeneous system, adjoint to eq.(lO), will then read as follows if

the transition to the transposed matrix is denoted by the superscript T:

d, -1r(t)A(t,. (13)
dt

Theorem 1 (Resonance case). If eq.(13) has a solution vector T(t) periodic

with P, for which
t+ P
f 6cT tdt = C +-o0 (14)

is obtained, each solution r(t) of eq.(9) - independent of the initial values -

will assume values with increasing t whose absolute amounts are at least of the

order of magnitude of v151. The proof is given in Section 3.

* See also another report by the same author (Bibl.2).
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Then, we obtain the following in Section 4:

Theorem 2 (Principal case). If eq.(13) has no solution vector 1 (t) peri-

odic with P, then eq.(9) will have solution vectors r(t) for each sufficiently

small 0 which, for all values of t, retain the order of magnitude 101, i.e.,

for which

IJ(t)I - Const. 10 (15)

is valid for all t, for example, the uniquely existing small solution periodic

with P:
U(t + P) W • (t).

This only leaves the exceptional case to be defined which states that

eq.(13) will have solution vectors 1 1 (t), ... , gr(t) periodic with P at 1 !

S r - n but that, for all these periodic solutions, the following expression is

valid: $+P 619

fbT(t)f(t) dt=o (e=,..) (16)

In this case, it is impossible to make general statements on the functions

& (U, t) without further assumptions.

Section 2. A Transformation

Putting

A t ) = usY() + 10 (), (17)

will yield
,, (1. o) = , (t). U (1. 0) = UO M0 + E M) ( 18 )

When applying the Taylor series with respect to X to the difference on the

right-hand side of the ith component equation of the system (9), we obtain

I

go( -+ X, ) = g,(1 0, 1t) + dgj (u..t- + f d A' ), t)

or, if xk (t) are the components of the vector r(t),

19



g,{e •.t)- g{u, ) _ *-4d. ar(, )
,+ ( (19)

+ Pei (m (, A, t) A dA
hki avUt am,

In addition to the matrix W(t) from eq.(1i), we next introduce the "tensor"

T(u(t, X), t) whose n components are to represent the matrices (k, . 1 1, o..,

n ): Pg (a (9, A), 9) .( ýr I. It ....)Dube*,.... (20)

' 1 ((t..). t)
T (U(t, A), t) T: ( 1 u A):* t)(1 S(21 )

A( (i. A). ,) !

Then, eq.(9) can be written in the following form:

-t(0 +(,) + f T Q)T(-(t.A). ) t)(I- A)dA (22)

Of these, at sufficiently small e and Oo, solutions will be sought with

I1(t)Ije at I#I 1$o (23)

It should be noted here that the tensor

T (u (t, o). t) =T(u.Q).

has the period P:

T(u ( +P), + P) =T (u.(t). t). (24)

From this fact, in combination with the first relation (23), the existence /20

of a finite constant M follows in such a manner that, for the integral in

eq.(22), the following is valid:

)(,) - S)d• M. (maxk()I)' (25)

For this, it merely must be assumed that all second derivatives on the right-

hand side in eq.(20), within an interval of t1 ! t - tj + P, are restricted for

all values Iu(t, X) -uo(t)j ! C of the first argument.

20



Section 3. The Resonance Case

Let the adjoint system (13) have a solution vector 1(t) periodic with P,

for which eq.(14) is valid. In contrast to the argument of theorem 1, we are

making the following assumption:

I (t)l < N Y1PI (26)

for an arbitrary solution r(t) which satisfies the first stipulation (23) for

all t with a finite constant N, to be determined later. Analogous to eq.(33)

in another paper (Bibl.2), eqs.(22) and (13), for an arbitrary positive-whole n

with C, will yield on the basis of eq.(14):

1 r(t) [ -(t + P) - z()] = MC, .P +

f T 6(,) f IT (,) T (U (T.A). -r) E (r) (I - A) dA dr. ( 27 )
8 0

Because of the periodicity of IT (t), a constraint of the following form applies

to all t: I sq't)l - D. (28)

If eqs.(28), (26), and (25) are used, an estimate according to eq.(27) will be

D. 2NIPl' + DMN'I#ImxPm Mf#1ICI
or

2DN 2m f _ i -. B (29)
with

B=ICI -DMN'P>O. (30)

If a sufficiently small constant is substituted for N, then B will be positive.

For each 0 / 0, the quantity m can be selected so large that eq.(29) will con-

tain a contradiction. This proves that the assumption (26), in combination

with the first relation (23), is impossible and that, therefore, the following

theorem applies:

Theorem 2. In the resonance case, four constants e. M, D, N exist, from

which because of eq.(30) a positive B can be determined in such a manner that

21



each solution r(t) of eq.(9), within each interval of the length 2 DNp

assumes at least once a value so that

•(t)l > Min (,.NP•, ) (31)

is justified.

Lema. If 0 is restricted by /21

#I< -, with N'< ICI [see eq.(30))

then, in each interval of the length D P the following estimate willB #Ip '

apply for at least one value of t:

JI(1)] > Nj•j• (32)

Section 4. The Principal Case

In the following, we will require the main theorem on implicit functions

as an auxiliary theorem.

Auxiliary theorem 1. Let the vector

vs .(a .. ....#)\
,,, (,,,,.a,.,,a,, (33)

in a certain vicinity of the quantities
a1=o, a,=O ... , a,•0, #=o

possess continuous first derivatives to av and let this same vector be continu-

ous in all n + 1 variables. In addition, let

b o, .. o) = o; (34)

finally be the functional determinant

Ov,(.... .0.0) + (ik= 1, 2. ) (35)

Thus, for each sufficiently small ao a constraint 0o will exist such that, for
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each 8 with 181 B 8o, a solution vector d 4a (a) of the systems of equations

t(a.#) = 0 (36)

exists uniquely, for which Ial ! ao. For the proof, see for example another

paper (Bibl.3).

This auxiliary theorem is applied as follows: Each solution vector • (t)

of eq.(9) is characterized by its initial values:

(0)-a = (37)

i.e., \.

S= 

t) (38)

With respect to t, this vector has the period P if and only if

i(°.f) (a.•; P) - •(u.•; 0) - 0 (39)

This corresponds to the argument (36) of the auxiliary theorem. For 8 = 0, /22

the null vector represents the solution of eq.(9); consequently, eq.(34) is

satisfied since then also a is the null vector. The assumptions as to deriva-

tion and continuity of the auxiliary theorem are ensured by the following

auxiliary theorem, in accordance with known theorems as to the dependence of the

solution vectors of eq.(9) on the initial values a and on the parameter a

(Bibl.4 ).

Auxiliary theorem 2. Within the interval 0 ! t 1 P, for a given e, one

positive ei and 51 each can be determined such that the solutions r(t) of

eq.(9) satisfy the estimate Ir(t)l ! e in the entire interval if only Ir(O)I !

• e and NSI ! 6 are selected.

In accordance with eq.(39), it is necessary, for application of the auxili-

ary theorem 1, that el - ao as well as al ! Oo. A differentiaticn of eq.(9) to

23



aL indicates that the vectors

a;( agDo. ) (l=,.2.. ) (40)

are solutions of the system of equations

_14* =(41)
d.= e (i) ."( *

with the matrix

at N ( + T Mb+ ) ) (i,k =1, ). (/42)

Therefore, the vectors

-V(o. .o;o. (1=1.. ) (43)

are solutions of eq.(l0) since, in that case, eq.(42) passes over into eq.(ll).

The vectors (43) are linearly independent since their determinant for t = 0 is

the unit determinant [see also theorem 4 in another paper (Bibl.2)]. Since, in

the principal case, we make the assumption that eq.(13) and thus also eq.(l0)

(see theorem 8 (Bibl.2)] has no solution vectors periodic with P, it follows

that (see theorem 10 (Bibl.2)]

Det (t"A ' (T P+0

A brief examination of eq.(39) indicates that this ;s exactly the condition (35)

of the auxiliary theorem. Since all conditions of the auxiliary theorem are

proved to be valid, its argument - in our case, eq.(39) - can be considered as

also proved.

Therefore, the following applies:

Theorem .. If eq.(13) has no solution vector A(t) periodic with P, con-

straints ei and ai will exist for a given e such that an initial vector r(O)

with Ir(O)l < Gi exists for each a with 131 ! 01, so that the solution L(t) is

periodic with this initial value r(O) and satisfies the uniform estimate
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Ir(t)J ' €.

This represents a portion of the theorem 2. To prove this theorem L21

completely, we will need still another theorem.

Theorem 5. Assume that a finite constant E exists guch that, at suffi-

ciently small 1I0, the following will be valid for this solution r(t) of eq.(9)

periodic with P: IF (t)l -:S E -I #1 ( 45 )

Proof. If ; 1 (t), ... , •A(t) are linearly independent solutions of eq.(13),

the following expression is obtained under utilization of the periodicity of

r(t) analogous to eq.(38) (Bibl.2) for v = 1, ... , n:

"tP

'AT V P) - (T) (t) -- f / Tf(T)(,)dr+

.P (

f 6,T (r) fXr(T) T(a(r. A),,) I(T) (I -A) dAd( 6
1 0

[see also eq.(27)]. The determinant of the coefficient matrix on the left-

hand side, according to the assumption of the principal case, differs from zero

[see eq.(44)]. Therefore, the linear system of equations (46) can be solved

for the components x 1 (t), ... , x,(t) of J(t) on the left-hand side, using

Cramer's solution formula. If, at fixed t,

x- Max IX,(T)I (v =1,2 ... , x), (47)

then an estimate of the following form will be obtained in this manner:

x K I# I -L (max I(t)I)' (48)

with two finite constants K and L, taking eq.(25) into consideration.

Since max IT• (t)l _5 Vi/x

it follows from eq.(48) even more so that

i .e o, max I x(t)t-< In K I#I +- .', L • (max IX(f)I)2.

max I• (t)l rI -- it" L (Amax I (w)lJ j K 0.
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On the basis of theorem 4, we can then assume that the expression in brackets
, 1

is positive. For example, for 2VL , this expression becomes > -L.2

From this, the estimate (45) with E = /-nK is inmnediately obtained.

Instead of using Cramer's rule for the solution, it is naturally also

possible to solve eq.(46) for r(t) by left-hand multiplication with the matrix

inverse to [3(t + P) - F•(t)] and then to make the estimate by means of

Schwarz' inequality lI(t)I. This will also yield eq.(45).

F.

BIBLIOGRAPHY

1. Iglisch, R.: The Resonance Case in Nonlinear Ordinary Differential Equations

of the Second Order (Der Resonanzfall bei nichtlinearen gewvohnlichen

Differentialgleichungen zweiter Ordnung). Arch. Rational Mech. Anal.,

Vol.3, pp.187-193, 1959.

2. Karim, R.I.A.: The Resonance Concept in Systems of n Linear Ordinary Dif-

ferential Equations o.:' the First Order (Uber den Resonanzbegriff bei

Systemen von n linearen gewihnlichen Differentialgleichungen erster

Ordnung). Arch. Rational Mech. Anal., Vol.6, pp.21-28, 1961.

3. v.Mangoldt-Knopp: Introduction to Higher Mathematics, loth Edition,

Vol.II, No.134 (Einfihrung in die Hdhere Mathematik, lO.Aufl., Bd.II,

Nr.134). Hirzel, Stuttgart, 1956.

4. Kamke, E.: Differential Equations of Real Functions, 3 rd Edition, Section 17

(Differentialgleichungen reeller Funktionen, 3. Aufl., 6 17). Akademische

Verlagsgesellschaft, Leipzig, 1956.

5. Iglisch, R.: Arch. Rational Mech. Anal., Vol.3, pp.179-186, 1959.

26



PART III /27

STUDY OF THE RESONANCE CASE IN SYSTEIS OF LINEAR
ORDINARY DIFFERENTIAL EUATIONS

Section 1. Introduction

Previously (Bibl.l) we investigated the linear inhomogeneous differential

equation system

with a n-row matrix 21(t) which, for simplicity, was assumed as being continuous

and having a continuous n-component vector f(t) of the same period P

A (t -+P) -pA1(t) , 'f~t -+P) -ft)(2)

The corresponding homogeneous system then will be

9 - a~t)(3)

and the adjoint system

11 - , (4)

where the superscript T denotes the transition to the transposed matrix.

In all, three cases were differentiated: The principal case is present if

eq.(4) -has no solution periodic with P; the resonance case is present if eq.(4)

has at least one solution vector 1 (t) periodic with P, for which
P

is valid; the exceptional case is present if eq.(4) does have periodic solu-

tions 1 1 (t), Ia(t), ... , 3 0 (t) (1 ! p - n) periodic with P but if the following

is valid for all these Ru (t):

P

J; S (1)f(T)d T - o for,^ - 1,2,...,'. (6)

Whereas, in the principal case as well as in the exceptional case, solutions
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of eq.(l) periodic with P, i.e., remaining limited for all values of t, are in

existence, the values of all solution vectors r(t) of eq.(l) tend toward in-

finite with increasing t in the resonance case, independent of the initial

values. The individual steps in this process will be further investigated in

the present paper.

We use the following notations /28

19 - (211' -12' "'" '-")' r'V' •" (.1")"r (7)

for denoting a fundamental system of solutions of eqs.(3) and (4), respectively

[see eq.(17) in a previous report (Bibl.1)]. In the method of variation of the

constants*, using the abbreviation

",()t). C -, (t) C (8)

the following argument is constructed for the solution of eq.(l):

r_ M - a , (t) . C (t) (9)

In the present report, an argument similar to eq.(8), namely,

r~t - ý.Mt , a ,< n
S (V)

[see eqs.(77) and (78)] is discussed, where the *v)(t) are composed in a

suitable manner from the rv(t). In the resonance case, statements can be made

on the behavior of these vectors g(V)(t) for t increasing without bounds. Here,

the matrix
* L 1(t .1Qt + ) (10)

which had been discussed in Section 2 plays a decisive role. By a suitable

transformation, the system (1) can be brought to a "normal form" (Section 3)

with constant coefficients, by means of which the study of the vectors r(V) (t)

SWith respect to the method of variation of the constants, see footnote on

P- 58.
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can be made much more concise (Section 4). Making use of this method, four

numerical examples will be given at the end of this paper (Section 5).

A brief report, to be published soon, will apply the above considerations

to the case of an ordinary differential equation of the nth order with periodic

coefficients. In that paper, additional examples will be given.

Section 2. The Matrix 3 /29

Theorem 1: The matrix $, defined in eq.(iO), is a constant regular matrix,

i.e., a matrix independent of t, under the first assumption [eq.(2)].

Proof: In view of eq.(7), eq.(3) can be written in the form of

Then, a fundamental solution matrix of eq.(4) will be as follows [see (Bibl.l),

eq.(17)]: 12 (

which means that

5- 1 Pt . (13)

is valid. According to eqs.(lO), (12), (13), and (11) we then obtain

P),. +,)T + P) +3~t e( . )

- -3 (t) OL(t) laCt + P) +T(t). (t + P) ) ~

when taking the first relation (2) into consideration. Consequently, $ is a

constant matrix. That its determinant differs from zero follows from the non-

vanishing of the two determinants of the matrices on the right-hand side of

eq.(10).

Theorem 2: If we pass from a fundamental solution matrix p(t) of eq.(ll),

on multiplying on the right-hand side by a regular constant matrix 61, to a new

fundamental system
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14.= (14)

[see (Bibl.l), Theorem 5), the following relation will be valid for the matrix

If which had been formed in accordance with eq.(lO):

*'* .- 1 *tZ (15)

Proof: From eq.(lO) and (14), we obtain

- (t P) - -C-' 297M)9(t *

This means that, by a suitable selection of the fundamental system 9(t), the

matrix $ can be transformed into any normal form which can be produced by a

similarity transformation of the type of eq.(15).

Theorem 3: Let the constant matrix $ be given in the Jordan normal form /30

[see (Bibl.2), Sect.19.1]

S. .,,,(16)

where one elementary component $v of the order my 2 1 in the main diagonal has

the eigenvalue Xv and contains ones in the next higher diagonal (zeros are not

entered). It is obvious that

n a + ÷2 + . (17)

Then, it is possible to form a matrix Aq with any real number q, so that

4(18)

is valid and that A, has a normal form of
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" .4 (19)
- ~ ~ W ith d,~

where
w he r eth < <7 (20)

q q

and to (0)1 1 for -. S 1,2, ... a- 1.-, -- ,-X (21)~4 r.(-.)

Proof: Let us form [see also, for example, (Bibl.3), PP.333/4] Z31

in •. inCL.4 •.3.•) ,(22)

where (v is the unit matrix of rank mv while the my-row matrix

(0 .) (23)

has the rank my - 1. By expansion in series, we obtain*

in - in(O" t) + In( - t .

S(1J1A9  + *in( 4+~

*Cnl,') 4 + -

* The formula

inCA, t,,) - (in~i,.

used here is equivalent to

as is readily verified by means of a power series. On the basis of this fact,
we can also write in abbreviated form:
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,, - . 1_ " - 1
. •,' €.,,,, _ v v"- -

[see also, for example (Bibl.4), p.82]. For this, it is suggested to use the L22

principal value of the natural logarithm in, i.e.,

which agrees with eq.(20). Taking eqs.(21) and (19) into consideration, we

will obtain
i &, (25)

from which, by means of expanding the exponential function in a series [with

respect to the convergence, see for example (Bibl.4), p.119],

(26)

is obtained. From this, eq.(18) with s can then be taken from eq.(19) since,

in forming the powers of Aq , the elementary components ?v do not exert a mutual

influence.

By an additional collineatory transformation, the matrix Aq in eq.(19) can

be brought to the Jordan normal form. If ( represents the matrix of this simi-

larity transformation, i.e.,

then $ is transformed into M- $9, as readily demonstrated by expanding the ex-

ponential function in a series. We can now write
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A with(27)

This will yield the following:

Theorem 4: The matrix $ can be brought to the following form by a simi- /33

larity transformation: (28)

with N from eq.(27).

Lemma: If, specifically, all elementary components of the matrix $ have

the order 1, also Pq will be a diagonal matrix.

Definition: Below, we will replace the arbitrary number q by the period P

of the coefficients of eq.(l); in this case, we can write in abbreviated form:

d . 1, d " a * e,'P. (29)

Theorem 5: By means of the constant matrix A [see eq.(29) and (27)], the

fundamental system f•t) of eq.(3) can be written in the form

MQ C) .ith a;)-(" , - (30)

where §(t) has the period P. Analogously, the fundamental system 3(t) of eq.(4)

can be brought to the form

where
2.+ -1), T ;i M-• I -i (t)•) *W,,.., )) (32)

also has the period P.

Proof: It is to be demonstrated that, in the argument (30),

W - .4)(tC) • e,-t 7.2(t)l, 2(,.... I(t)) (33)

34



has the period P. Making use of eqs.(10), (29), and (30), we obtain

*( P) 19l(t + P)e - ' ed' .)()*U~

Then, the relations (31) and (32) are directly obtained from eqs.(12) and (30).

The conventional way of constructing the constant matrix 9, described in

developing the theorem 3, usually is quite time-consuming. That this procedure

can be less cumbersome in certain special cases is indicated by the following

theorem*.

Theorem 6: If the matrix t(t) with its integral from 0 to t, periodic

with P, is transposable, i.e., if the relation

t

exists identically in t, then the constant matrix

. (35)

will yield (

(36)

To this belongs the fundamental solution matrix

. . . •(37)

with the following matrix, periodic with P,

r (t). • (38)

Proof: Below, the two formulas which can be proved by expanding the ex-

ponential function in a series are used [see also, for example (Bibl.4), /3

• I wish to express my thanks to Dr.H.Eltermann for developing the idea of

theorems 6, 7, and 8.

35



pp.121 and 138]:
• - • • eEC. f •l I.(39)

C i (40)

First, it can be demonstrated on the basis of eq.(40) that ,M(t), according to

eq.(37), is a fundamental solution matrix of eq.(lU). [But note: M(0) =( .]

The constant matrix $ (see theorem 1) can then be calculated from eq.(l0) with

t = 0, yielding P

*' - Vft -, •, (41)

from which eq.(36) is obtained with eq.(35).

It only remains to prove that the matrix *(t defined by the argument

(37) in accordance with eq.(30), can be written in the form of eq.(38). Because

of eq.(35), §**(t) has the period P, since

p

=(42)

The relations (37) and (38) can be reduced to the identity

of (A (4,3)

if it can be demonstrated [see eq.(39)] that the matrix A". is commutative with
t

the matrix Yfl(7)dT, i.e., if
0

is valid. Since this equation is directly understandable for t = 0, eq.(44)

will be obtained by differentiation to t, based on the commutability relation

0 6(45)
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Taking the periodicity off (t) into consideration, we can calculate /36

Alt) J~?4r.AW (f At.WsT- f&I,?)d /(6(0r (46)

and, taking eq.(3 4 ) into consideration,

- r ~ rt

which proves eqs.(44) and thus also eq.(43).

By a similarity transformation, the matrix (35) can now be brought to the

Jordan normal form, indicated in eq.(27), in such a manner that the sequence

of eva,, t,..., a, is the same. This will yield a matrix S4, for which

e 'Y . e 
(47)

with R from eq.(29) is valid. The eigenvalues of the matrices (47) thus are

mutually equal. Accordingly, the eigenvalues cvv of $1 and R can differ at most

by nv " p- with integral nv. Thus, we have

it vith 1ý(48)

[see also eq.(27)], if Fv denotes the mv-row unit matrix [see eq.(17)]. This

will lead to the following theorem:

Theorem 7: By a similarity transformation, Aý" from eq.(35) can be

transformed into a matrix S? which is correlated with eq.(48) over i from

eq.(29), so that JR can be calculated.

Theorem 8: The assumption (34) for the theorems 6 and 7 can be replaced

by the stronger assumption
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at arbitrary t and T.

Proof: It is to be demonstrated now that eq.(304) (with arbitrary lower

limit) follows from eq.(49). We calculate:

tt t

t. S. t.

Section 3. Transformation of the Differential Equation System L38
to a Normal Form

Theorem 9: By means of the transformation

C(t) - f(Ct) W(t) (51)

with §(t) from eq.(33), the system of differential equations (1) is transformed

into the following system [Floquet's theorem, see for example (Bibl.3),

Chapt.III, Sect.5, and specifically P.751:

'" (52)

with (see eq.(32)]
T4 t). •-¢*t) •-, 'f t) (53)

which has the constant matrix A according to eqs.(29) and (27) and also has a

b(t) periodic with P. We will call eq.(52) the normal form of our system of

equations (1).

Proof: In view of eq.(32), a substitution of eq.(51) into eq.(l) and

consideration of eq.(53) will yield

V,'- -" ( AO - f),,

It then remains to demonstrate that the matrix to be applied to 0 is equal

to 8, i.e., P f - O(54)

In fact, repeatedly taking eqs.(33) and (11) into consideration, we obtain
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4C7 -f t(55)

Theorem 10: The homogeneous system 13-2
I

, . " ,(56)

conjugate to eq.(52) has no other solutions periodic with P than solutions of

the form
S. € .(57)

Naturally, an analogous statement applies also [see eq.(12)] to the system

r (58)

adjoint to eq.(56).

Proof: The system of equations (56) is resolved into the mutually inde-

pendent systems
, -,.• , , A ... ,. (59)

Here, we then have

"(60)

Such an individual system (59) possesses the following mv-dimensional solution

vectors A" t
•(t} e •(61)

with an arbitrary constant vector cv. Because of [see eqs.(27), (23), and

footnote on p.32]

""= "th (01.:.:) £ (62)

eq.(61) will be transformed into .'t' - ,

(63)
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Because of eq.(20) (with q = P), the vector (63) is periodic with P if and /40

only if

OWo kn -a (64)
o

where c, has been normed. The only noxmed solution vector of eq.(59), periodic

with P, will thus be (0)
The corresponding solution vector to(t) of eq.(56), which is periodic with P be-

cause it is constant, will have, except for a 1 at the point

( Y) - MI + U2 + ... + a V-1 + 1 (66)

with Yv = 0, only zeros as components. The n-component solution vector of

eq.(56), conjugate to eq.(65), will be denoted byto(v). This means that in

eq.(60), all mu = 0 must be used at P f v, so that Mv will have the value

[eq.(65)]:

* 0(3y if " " (67)

This will yield the auxiliary proposition:

Lemma: The constant solution vectors of eq.(56), i.e., the vectors peri-

odic with P, are linearly composed of the vectors (67) with Wv from eq.(65).

Analogously, the normed constant solution vectors for eq.(58) are

, if S ' 0(68)

with the mv-component vector /41

I) 0 (69)
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where Uc vj , in addition to zeros, has only one component 1 at the point

.- +2 + ÷ * w, i th dr,. o . (70)

Taking eqs.(30) and (31) into consideration, we obtain directly:

Theorem 11: The solution vectors h(t) of eq.(3) and 3(t) of eq.(4), peri-

odic with P, can be written in the form of

~(71
and, respectively,

where (v) and [v], respectively, have the meaning of eq.( 6 6 ) and (70).

Theorem 12: For the systems of differential equations (1) and (52), we

always have simultaneously the principal case or the resonance case or the ex-

ceptional case.

Proof: According to theorem 11, the solutiots of eqs.(h) and (58), periodic

with P, are at a one-to-one correspondence. In addition [see eqs.(5), (53',

and (71)], the following applies:

? f
0 0 •(72)

where the conventional notation was used. Now, the correctness of theorem 12

can be read directly from the second paragraph of Section 1.

The matrix ý(t), defined in eq.(33), is broken up into the sum of s n-row

square matrices 41(t f , (73)

where the matrix §(V). in the columns with the numbers

V)) (') + 1, .... :YJ contains the vectors (t). t)

but otherwise only zeros*. The system of differential equations (52) decomposes

* Here, the notation of eqs.(66) and (70) has been used for the first time

without the restriction av = 0.
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into the independent subsystems

# = ,V.. ,. ,,.....,, (74)

where we always have the dimension mv; here, ov(t) contains only the components

(v), ... , [v] of O(t). Then, we have

30,(t)

VS~

if the n-component vector

S(76)

is defined.

It would seem logical to introduce the vectors

• ()= . )=

(77)

in which, however, all n components may differ from zero, for which reason the

denotation was supplemented by an asterisk. This will yield:

Theorem 13: Each solution X{t) of eq.(l) can be written in the form

S •t) ((V)
P1.1S((V) -- ()

with *.V) (t) from eq.(77).

Lemma: If, specifically, $ has a diagonal form, eq.(78) with (v) [v] = v

specializes to

;q )"(79)
42,=1
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Resolving, in accordance with eq.(73), A&

.2/ * .+. ...(1) (2) (80)
as well as

. A ... (2) (81)

the following theorem is obtained:

Theorem IL.: The vectors ( (t), defined in eq.(77), satisfy the s systems

of n differential equations each
I
(ithW at . ÷•."(t). 1, 1,2,..... (82)

with

4 1'ct .•' 1 c) b"(t). = c(t) L-e(t). 4(t) (83)

under use of the above symbolism.

Proof: By differentiation of eq.(77) and with consideration of eqs.(74)

and (76), we obtain

CAD)~~ = .t"bd (A.

It is readily verified that
I

1I ., t ho (84)

in which case the form of the matrix f'(V) must be taken into consideration.

This will further yield
•: €,,II

from which, according to eq.(77), the correctness of eq.(82) with the first /L5

relation (83) is obtained. The second relation (83) can be perceived as fol-
T

lows: The zero columns of ( are transferred into zero rows of ) . Conse-

quently, it follows from eq.(53) that

IFt. .- (85)
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Section /4. Discussion of the System of Differential Equations
in the Normal Form

Theorem 15: Let the matrix $ have a diagonal form and let I,, ... , be

the independent solution vectors of eq.(4) with the period P and, finally, let

[eq.(72)]

P +m 1o for ,...1'....,

'?i4tiri wJ4p'Cldr (86)
o for ,.- -. 1,...,.

Then, for 1 !9 p. r (partial resonance case) each component of K)u(t) [see

eq.(79)] for which the corresponding component U7(t) does not vanish identi-

cally assumes, with increasing t, values of the order of magnitude of t; for

p. a + 1, ... , P (exceptional subcase)*, all these r(u) (t) are periodic with P;
~1C31

for p += 1 1, ... , n (partial main case)* exactly one X(u)(t) periodic with P

exists.

Proof: Since ý(t) is periodic with P (theorem 5), the analogous theorems

need be proved only for the D(U) (t). These have only one component '. (t) dif-

fering from zero which, according to eqs.(52) and (74), satisfies one equation

each of the form
zr .6 .(t) (87)

The general solution reads

@~V ) (88)

with an arbitrary constant cu. In the case Iu / 0 (• = p + 1, ... , n), accord-

ing to eq.(88) and from the condition

V,. (t + P) W

the constant cU can be uniquely defined as

* This case, however, must rot necessarily occur.



LO
Cr L 6. (,,rid (89)

In the case c = 0, according to eq.(88), we have

t
S• -N•••• ;AL • ... • (90)

0

For P = a 1 i, ... , p, this is periodic with P at any selection of the con-

stants cU. At P = 1, ... , 0, eq.(90) can be written in the following form [see

eqs.(86) and (88)]:

0

Since the integral is periodic with P, the linear increase of vU (t) with t

follows from eq.(91) and the corresponding statement for WU)(t) follows from

eq.(79).

This theorem is a special case of the following:

Theorem 16: Let • not necessarily be a diagonal matrix but let it be
ftP

given in the form of = e [see eqs.(29) and (27)], with the elementary com-
fyP

ponents $ e , where the quantities ftv are the elementary components of the

Jordan normal form of the matrix JR [see eq.(27) with q = P]. If eQVP / 1

(principal subcase), then eq.(74) will have a uniquely defined solution vector

N(v) (t) periodic with P, so that [see eq.(76)] the vector (V) (t), defined in

eq.(77), has the period P. If e = 1 and [see eqs.(70), (71), and (72) as

well as theorem 123 P

f Ir •,4,.,t - 11 zL ,.a• 0 (92)

(exceptional subcase), theli a one-parameter family of solution vectors UV(t) of

eq.(74), periodic with P, will exist from which a corresponding family of

vectors r(v)(t) will result. Finally, if the following relation exists in
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addition to eaV =1

rP vf I'

J ' 0T)J:)at mJbr.i(-),:- (93)
0 0

(resonance subcase), then each solution vector lv(t) of eq.(74) and thus also

each r(v)(t), with unboundedly increasing t, will take values of the order of
2 v of

magnitude t , provided that my is the order of $v and Av. (A supplement to

this is contained in theorem 17.)

Proof: In the case av t 0 (principal subcase), let us successively solve

the system of equations (74), starting with the last equation,

&a J a 6C,,,,T t CcvJ cog
arp. to~.

l,.€O•.._.. +• ,%t .(94)

The condition wz (t + P) = (t), analogous to eq.(89), will successively yield

C

1 (95)

Thus, the vector Ov(t) periodic with P and thus also r-*v)(t) is uniquely defined

in this case as well*. If av = 0, then

aoiL - 3 ad a , (96)

• If ((Qv) / 0, the integrals in eq.(94) with to = sign %R(o)"v instead of 0
as lower limit, will automatically have the period P, as can be readily veri-
fied. In that case, the last summands in eq.(94) must be omitted [cC = 0 for

[. = [v], [v] - 1, ... , (v)].
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(see eq.(86)] is used for decomposing the vector in eq.(74) /42

+,(t)- O A,, + (W). (97)
where

6 1;rv.•. -3 (98)

Let
,(99)

where, because of theorem 10, it still can be stipulated, for example, that the

first component qcv)(t) of Qv(t) satisfies the condition

f ,,,,. -O (100)

Then, eq.(7h) is equivalent to the two systems

~() &Pt)+ (101)

and

(V P + lcCt). (102)

Solution of eq.(102) in a manner analogous to that used for eq.(94), will yield

* tin~W M I 4t A 7 t C V

• . ] ..(103)

The condition 0(t + P) = &*(t), because of the fact that b.,(T) = bu(T) is valid

for ( =v] - 1, ... , (v), will yield

GJ ,-,,6^ 11 =o ,,d wTt •,c,)i• =o. (104)

Because of eq.(98), the first condition is automatically satisfied. Conversely,

the remaining conditions (104) successively yield unique values for the constants

C E , j z,C cV3- ... , C( v)+, whereas c(v) remains completely arbitrary. This L5_0

means that eq.(102) has a one-parameter family of solutions D*(t) periodic with
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P. If now, in addition to av = 0, also eq.(92) is satisfied (exceptional sub-

case), then av of eq.(96) is the null vector and eq.(102) has the zero vector

as the only solution vector periodic with P which satisfies eq.(l0C). This

means that the above calculated one-parameter family of solutions b*(t), per-

odic with P and having c(v) as parameter, furnishes the only solutions tv(t) =

10*
= M(t) of eq.(74), periodic with P. From this, the quantities r( ) (t), peri-

odic with P, can be calculated according to eq.(77). Conversely, if eq.(93)

coexists with o'v = 0, the system (101)
L1 I *&

Lv.. " 1 ,V-ra-1,...,v,3 (105)

is solved in the form of

q 410) ' Polynomial of the degree aI + + +.. * %+ 1 -e'

-[J+ ÷ -t(e - (v). (y) I,.... ) (106)

with the highest coefficient VE-13 • .Consequently, specifically q(v)(t)

will be a polynomial of the degree my. Since, because of eq.(98), the terms

vF(t) in eq.(i03) increase at most like t meaning that v~v)(t) at most

will increase like t ' each solution Ov(t), with increasing t, will take

values of the order of tav in accordance with eq.(99). The same statement then

also applies to the vectors r( (t) to be calculated from eq.(77) since, accord-

ing to eq.(30), Pv)(t) cannot be the null vector.

Without further proof, these same considerations show directly:

Lemma: The components v,(t) (a = (v), (v) + 1, ... , [v]), in the resonance
cv) + i-a

subcase, take values of the order of t with increasing t. The same

statement applies to the vectorial component summands a(t)va(t), occurring

in W in accordance with eq.(77), for each scalar component for which the

corresponding component of w (t) differs from zero (see theorem (17). Z51
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Theorem 1 : In the resonance subcase, each component xi (t) (a 1, 2,

... , n) of V )(t) from eq.(77) takes arbitrarily large values with increasing t,

unless, for example for a p, the components q- IU(1 (v), (v) M , ... , [+])

of the Oth row vector of * [see eq.(33)] all vanish; in this case, we have

(0()t) 0. More accurately, it can be stated: If we do not have x(V)(t) = 0

(see above), then x, (t) (P = 1, 2, ... , n), with increasing t, will take

values of the order of te' I provided that in the Pth row of 0V) [see eq.(73)],

the quantity oov)+x is the first component differing from zero.

Proof: According to eq.(77), (99), and (106), we can write

if q (V kt) or %) *Vt) represent the n-component vectors supplemented by zeros

from Q (t) and 0*(t). Rather than by eq.(l00), the resolution of eq.(99) is now

restricted by the stipulation that 13*(t) is to be periodic with P and normed.

In addition, we have r-'a

W. . (107)

[see eq.(33)]. In this case, D(v)(t), ... , c[v] (t) are linearly independent

vectors with the period P while % (t), according to eq.(106), is a polynomial

in t of the degree [note: a = (v) + A]:

C"3*+ 1 .. , J (108)

Thus, the pth component of eq.(107), taking eq.(105) into consideration, will

become E-2 V3 L2 /59

Since the first sum in eq.(109) is periodic with P, it will remain finite for

all t. If 4v)+' is the first nonvanishing coefficient in the second sum,

then _ (t) will take values of the order of magnitude tvX with increasing t

We still note the following (slightly weaker) alternative:
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Alternative: Either x(v)(t) assumes arbitrarily large values with increas-

ing t or else x(V) t) 0 is valid.

Note: If, corresponding to eq.(73),

is defined, then from the vanishing of all elements of the P th row of 0"), be-

cause of eqs.(30) or (33), the same statement follows for fv) and vice versa.

Section 5. Examples L2

Example 1: (Re theorem 15, resonance case and exceptional case, and theo-

rem 8).

Let us consider the system of differential equations

I x, - XI Cost + x2 aint + f(t)

- - X . sin t + X2 Cost + f 2 (t) (111)

under the following two assumptions:

j f 1 (t) - eSintcos (1 - coat) (ilia)

f 2 (t) - - saint Sin (1 - coat)

and I fl(t) - 2eSn t Sint sin (1 - cos t)

f 2 (t) . - 2ealn t sin t cos (1 - cos t )( lb)

In eq.(ll), we have

/ coat 9sint)O.tm . .. Cos t ie, sint J (21
Sint -cost (21)

with 0
(o (112)

• The numerals in front of the period refer to numbers in the main text while
the numerals behind the period designate the number of the example involved.
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On the basis of this latter presentation (2.1) the validity of eq.(49) can be

directly verified. Therefore, at P = 2", the quantity.R** from eq.(35) will /S

be the zero matrix, i.e.,
(36.1)

and •ct) •€•)(30-1)

as well as

In addition, eq.(37) must be used as the solution matrix of eq.(3), because of

eq.(49) (see theorem 6). Taking eq.(2.1) into consideration, this will yield

9 W -(37.1)

8 - c •[t -.. tJ, - 'tcst ) e-sintt 0

*~~ Si v' -qt

-sin(1 - con t CO co - cost 0e~i

Therefore, it follows that

COO coot) IsinOi -- i toa 10f(t - i) - coat) )cos -Cscost ) (: ;Sint," (12.1)

All solutions of eq.(4) thus will have the period P = 2rT.

In the case (llla), the resonance case is present since it is calculated

that

f),rr)4rv,,r - (resonance subcase)
t*0 IV , (86.1a)

1 r ,z(.J4,(7 = f.ir- 0 (exceptional subcase)

SBy substituting eqs.(37.1) and (12.1) into eq.(10), it is possible to confirm
eq.(36.1) at control.
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Taking eqs.(53), (75), (76), and (31.1) into consideration, we obtain /55

t *
Vt W JvTd f IT 4 r (74.1)

and thus, under consideration of eq.(30.1),

r Ct) , (t) Lzaw %'(t) [.C U v4,T7.,r tc ..jj (79.1)

Calculating out, eq.(,37.1) in view of eq.(8 6 .1a)will yield

) sin(1 - cos t )

CS) sinc( - cos t fint (113)

In accordance with theorem 15, each component of ()(t), with increasing t,

will again and again take values of the order of t, while r(2) (t), as a vector

periodic with 2TT, will remain restricted. The general solution of eq.(Ul)

then becomes

In the case (lllb), the exceptional case exists because of

7) 4 -. 2 f sinT sin(2-2cosr)dr--cos(2-2cos7) -.0,

*AT S (86 .1b)

Analogous to eq.(113), calculation yields

[ ) ( cosO - Cost J sinrt 1-cos(2-.2 cos)c

sin(1 - cost

VW(t) . (c -osit F sin t(14i) 2

W (Cos(1 - coste n2-co)+2

The general solution of eq.(111), composed in accordance with eq.(78.1), thus
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has the period 2r.

Example 2. (Re theorem 15, principal case, and theorem 8). /56

The system

(r! * l 0 cost )X (2 + sin t )x 2  + e sin t co 
s ((1+2t)-cosý

,X.- -C2.+sin OxI+(1 +i cost)x2 - esin t sin (C1+20) - cost (115)

possesses the matrix

1;) - o' ÷co t ÷t÷i ,.] 22

Ak cos 2__ .(1+cos t)C.+(2.sin 0- (2.2)
- 5int; 1 + cosyt

with Z from eo.(112) and satisfies the condition (49). As in the above example,

we find f t 21f. (35.2)

so thate2r• eIs t2r(64. 2VT. 4 1r 27-( (36.2)

since derivation is made by the method of power series which consists in expand-

ing the exponential function

Consequently, in the diagonal matrix , we have [see eq.(16)]

) 1 "'2 " e 2T.

Thus, the principal case is involved here. In addition, we calculate

(1) - e(t + sint)(. .(0 + 2t - cost )I

cos(l+2t-cos t) sin(1:2t-cost) (et; sinO ) (37.2)" -sin(1+21;-cost1) cos(1+21;-cost) )( •et'-72 t)

from which, by means of eq.(lO), we again obtain eq.(36.2). Analogous to L57

eq.(113), we find

-( cos(I+2t-cos) 
6t + sin t(...t- sin(1+2t-cos t) / 1' (116)

10t) /'sin(1.2t..cos 
8t + sin t c

cos(1+2t-cos t;)/
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With cl = -1, the quantity el')(t) becomes periodic with 2rr while at c2 = 0 the

vector r(It)and thus also the total vector (78) becomes trivially periodic.

Ekample 3. (Re theorem 16, resonance and exceptional case, and theorem 8).

Consider the system of differential equations

x , a- Nsint +x2  -1 +(sin t cos t)es i t n -cost]+fl(t) ( 117)

with

f I(t) - esint -I

f 2 Ct) . eCiSt - 1 (117a)

and, respectively, f 1 (t) - ecost- I

f2(t) - 0. (117b)

The coefficient matrix becomes

( si t 1+ (sint+ cost) esift- 
os

cost (118)
0 ~~~ - s i n t- C o 

1 5

if we define sint( sint + Cost ),sin t

Here, U(t) satisfies the assumption (49). We can then calculate directly

so that, because oft2 = 0,

a (+2W ( 7/1V (36.3)

Consequently, $ is an elementary component of the rank m = 2, with the eigen-

value A 1. Further, we obtain
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G * c o at -i ) f' ( os i j2t -C o s t _; +( 7 3

coat. (aSint - cost e- i +

..oo.t,-1 ,.[..ot- 1+ t .cos ,--e.,o,-2jj

o e cost- 1

with 4 I
Co t -I es nt -1 co~st / (120)

where eqs.(30), (35.3), and (36.3) have been taken into consideration. By means

Of tzt) 4cCt) *¢ t).• (51.3)

the following system of equations is obtained:

d=A zc+ • Ct) (52.3)

with [see eq.(32)]

( Ct) -4 (t" (53-3)

Jn the case of eq.(117a) and in accordance with eqs.(120) and (117a), we

have (-cost +1 -esint- 2 cost +I+ e-COs sint

0 eost + /1)cos tt (53-3a)

(e1)

Because of

0f y d;(92-3a)

the resonance case is present.

From eq.(52.3) [see also eq.(35.3)], we then obtain

v.'=V + e- I

V• -1 ,v2 -t + c2
t 2+
W c t + e t + c
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so that, according to eq.(51.3),

t 1 . Sint -I- costcost ),, c. t + e 't + c1 ) +( e (121a)
eest t- I (t + c 2 )

In accordance with theorem 16, • (t) takes values of the order of magnitude t 2 ;

in accordance with the lemma of theorem 16, v1 (t) and thus also xj(t) again /60

and again are of the order of magnitude t2, while v2(t) and x2(t) are of the

order of magnitude t.

Analogously, in the case of eq.(117b), we obtain

(t- (53.3b)

i T (92.3b)

! L

so that the exceptional case is involved here. From eq.(52.3) we obtain

V aV 2 4 1

Vý - O , V 2 -C 2 ,

v1 - (i + c 2 )t + C1 ,

and thus also, in accordance with eqs.(51.3) and (120),

t(e)-{ t - 1+ esint i_ eC cot -21c 2 + ecost (121b)
c2 ecos t - I

Obviously,

•t + 2T) = r(t) is valid for ce = -1

Example .. [Re theorem 15, resonance and exceptional case, at general

Consider the system /61

=x - (1 + sin t) xI + sint x 2 + f 1 (t)

xL - sint X2 + f2(t) (122)
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with

2:::) - . - (Sont+ cos

f2(t) a 01 - Cos t (122a)

and, respectively,
fl(t) I6 - cost

f 2 (t) o . (122b)

The coefficient matrix

1, + S (123)

t

is not commutative either with F[(T) or with rU(T)dT, as can be readily checked

by calculation. From the second equation of the system (3) we find, together

with eq.(123), I - cost
12(t) - c 2  t

and thus from the first equation of the system (3),

Set + I - cost (c 1- sin • d t)=

moist el Cost *C t e I cot-e Cs+Sn

so that we can select

-- _ - •(7.4)

Hence /62

(21r) 1)(e27 e2T 0(10.4)( 0 1•• o . 02 ) 1) .o ,l O .I

The matrix ¶ is partitioned into the two elementary components $1 with the

eigenvalue X= e and $ with X2 = 1.

Further, we calculate
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( :: (sint + cost (12.4)

In the case of eq.(122a), because of
It

0

the resonance subcase is present for 2 and the principal case for %. We then

use the method of variation of the constants* for further calculation. In the

argument
1 t. Ct) *= 2 (t) (9.4)

we then have L62
•l~t) I - Cos t O

C(t) - e ost C( i n t + c ost ) (1 2 4 )

The quantity r(t) again and again assumes values of the order of magnitude t

while ri*(t), on selection of co, = 0, is periodic with 2rT.

In the case of eq.(122b), because of

S0Jzz)~(c)~ =0 (86.1hb)

* On substituting eq.(9), under consideration of eq.(8), into eq.(l), we will
have

i.e., according to eq.(12)

this will yield

For the summands of eq.(9) in view of eq.(8), this furnishes

"*.5 ( 8) J
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the exceptional subcase exists for $9 and the principal case for $j As above,

eq.(9.4) is obtained with * (t) *I - cost et 0. -t Ooc(1 5

~2 (t) -*1 CO 1 (sint + cost/2(t e I -cost | . C02.

Here, r2*(t), for any coa, has the period 2rT while r1(t) has this only for o o..
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PART IV /67

THE RESONANCE CASE IN LINEAR ORDINARY DIFFERETIAL
BýUATIONS OF THE nth ORDER

Section 1. General Considerations

In an earlier paper (Bibl.1), we investigated the resonance case in systems

of n linear ordinary differential equations of the first order with periodic

coefficients. Here, this theory will be applied to linear ordinary differential

equations of the nth order with periodic coefficients. Consequently, let the

differential equation L÷.. n + a1(t)x(n-1)÷... + an(t)x - f(t), (i)

be given in which, for all coefficient functions and for the function f(t),

reality, continuity, and periodicity with the period P are assumed:
a•(t + P) - a,(t) (,a- 1,...,n), f(t + P) - f(t). (2)

Using the notations
1• -W , 2x - x", .... I n•c - X(n - )(3)

the differential equation (1) is transformed into the system

='r .L(t) +•t 0,)
with

I I )

(s-) 'Ai.- (5)
I 0 -- I

To the homogeneous differential equation conjugate to eq.(l)

L[Ax y (n) + al(t)y(n-1)....+ an(t)y - o (6)

the following system of differential equations will then correspond

V "Ou(t) (7)
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with /68

(8)

The homogeneous differential equation, adjoint to eq.(6),

L C, ('l)n z.(n)÷(-)n-l(al(t)z) (n-1)÷°. +a n(t)z-o (9)

when using the notations

U- z - nz' + a, nz = a, z - %I

_2. -- n-1z' + a2 nz - a. z (alz)' + z

_3 Z a -- ,zl + a. nz = asz - (a 2 z)' (alz)-zO" (10)

0.- IzO + a., z ]

will be transformed into the system of differential equations

with

(12)

In another paper [Bibl.2, eq.(17)], the following was demonstrated:

If P(t) is a fundamental solution matrix of eq.(7), then

ýJ(t) - (t 1C))T ' ( 1 ***.. , (13)

is a fundamental solution matrix of eq.(ll). According to another paper /69

[(Bibl.1), eq.(30)], a fundamental solution matrix 7(t) of the following form*

• For abbreviation, we will later write xIh (t) = qu(t) and analogously in the
first component of other vectors.
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(14)

exists, having a matrix 4(t) periodic with P and a constant matrix f which

latter is written in the Jordan normal form [see (Bibl.l), eqs.(27), (28), (29)],

from which, for the fundamental solution matrix (13), the following presentation

is obtained [see (Bibl.l) eqs.(31) and (32)]:

ID 0 ith
(15)

We will treat the general case [see (Bibl.1) eq.(27)] that the matrix A is

partitioned into s elementary components

(16)

with the orders my, in which case the following is assumed to be valid

o f " v -. (17)
0 fo , . 1*- + -1.... ,

(p = 0 and P = s is admitted).

For the general solution x(t) of eq.(1), using the method of variation of

the constants [see (Bibl.1), eq.(9)] and the footnote on p.58, we obtain

.(1) 1 Z, J)d

[see eqs.(5), (10), and (13)] which can be resolved, in the form of*

i(t) 2 '0(t) (19)
Val

into the components
VXM- :;XM z Mf~t)d

^..t - 1t ()d (20)

* We changed the symbol x~v) into "x from that used in our first paper (Bibl.l)

so as to prevent confusion with the derivatives.
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with the summation indices [see (Bibl.1), eqs.(66) and (70)]:

(,N a a1 + S2 + .. +m,.0+

For the components vx(t) with v = p + 1, ... , s, we can assume that they

are functions periodic with P. These are uniquely determined [see (Bibl.1)

theorem 16].

In the case v = 1, 2, ... , p, the following is obtained in accordance with

our first paper [(Bibl.l) eqs.(109) and (106)]:
v t'-0

"x(t) P -' ."' ' (22)

where v& t) has the form

'9.C) . , for A-- o,'1 9...a, -, (23)

The W+ Ct) defined elsewhere [(Bibl.1) eq.(99)] are of no importance here. L/

It is further found that the constants vc, O aside from depending on v, depend

only on the difference P - Y; thus, using

"C * d (25)

eq.(23) can be replaced by

va. 1 3  VI"#,.. (0, for . .. S 1; (26)

with the procedure being the same for eq.(24). The quantities vd with A -

- Y > 0 are arbitrary integration constants, whereas

d,- i-^ P &a,) Ga- o,0,...,., - 1) (27)

with [see (Bibl.l), eqs.(86), (92), (93) and note n'v, (t) ZEVJ (t) according

to eq.(i0)] T

a I J T~fr4r a Arv()T (28)
0 6
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In the resonance subcase (v = a, ... , a) the quantity 4x(t) will always be a

polynomial of the degree my with the coefficients v8(t) which is periodic

with P, while the coefficient v') (t) of the highest power is obtained from0

eqs.(14), (26), and (27) as

6 ) ( W (29)

which means that it is an eigenfunction of the homogeneous differential equa-

tion (6) periodic with P. If, in the exceptional subcase, vd$v with the small-

est ýy > 0 is the first nonvanishing coefficient (25), we will obtain in an

analogous manner, provided that Oy < my,
L72

for ''4rt

8 I4. ,~ n A m~v*(30)

In what follows, eq.(22), omitting the highest t-powers with vanishing coeffi-

cients, will be written in the following form:

F

•e•.8 Lt• P -" .. f- or -. + 1.., (31)}

A solution (19) of eq.(l) which is represented in the form (31) for v = l,

*.., P and which is periodic with P for v = p + 1, ... , s, will be denoted here

as the "tnormal solution"l. Such a normal solution can be written in the form of

Jae
where

S. h•-- (, ,o) (33)

is used and where the 'TP ) are composed of the veý(t) in eqs.(26) and (24) to

yield functions periodic with P.
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It should be emphasized again that, in eq.(32), only one special solution

of the principal subcases is used, namely, the solution periodic with P, whereas

in the resonance and exceptional subcases the complete solution is used with my

arbitrary integration constants. /7

In view of eqs.(29) and (30), the following theorem can be confirmed:

Theorem 1: If, in eq.(33), w > 0, then the factor ,o(t) of the highest

power te occurring in eq.(32) will be a nonidentically vanishing solution of the

homogeneous differential equation (6), periodic with P.

It is directly obvious:

Theorem 2: If the resonance subcase is valid for v = 1, ... , a > 0, the

order of the powers of x(t) in eq.(32) will be at least

". >' ( ... , a *-.w--- U& (3
.~ (oal,- ,w 11. (34)

and at least one solution x(t) will exist for which

This latter statement follows directly from a consideration of eqs.(26), (27),

and (31).

A successive differentiation of eq.(32) to t yields

,f-zc-,-(35)

k - "12,....,(n - )

where the formally written functions To (t) with 0 < 0 must be replaced by

zero. From this, the following is directly obtained:

Theorem 3: If Vo(t) in eq.(32) is not constant, all derivatives x(1) (t) of

eq.(32), with k 1 1, ... , n - 1, have the same sequence of power increment tW

as x(t) itself. If, conversely, To, 'YT, ... , ft- are constant whereas YL(t) is
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not constant, the power orders of the derivatives of x(t) decrease successively

by 1 down to xý 4)(t) and, from then on, remain constant equal to w - C.

Section 2. The Case a(t) * 0 /T

Considering that, in the case of

an,,(t) * 0 (36)

the homogeneous differential equation (6) in eq.(l) cannot have constant solu-

tions, it follows directly from theorems 1 and 3:

Theorem 4: Under the condition (36), all derivatives x") (t) (k = 0, 1,

... , n - 1) of a normal solution (32) of eq.(l) always have the same power order.

Note: The only exceptional case of theorem 4 can possibly be the case of

X(t) - cona .- c o (37)

which occurs for
t(t) a CA() (38)

since, in that case, x(•( (t) 0 for 4, - 1. It is worthwhile to group this

trivial but interesting special case with the general considerations.

Primarily, the resonance subcase must not occur here since then terms with

t-powers would necessarily enter in eq.(32). Consequently, the assumption of a

solution Aa(t) of eq.(ll), periodic with P, for which [see eqs.(28) and (38)3

Vf 1,,, .,& ,( a r A r 0 (39)
0

is valid, must be continued up to contradiction. This contradiction is obtained

directly from the first and last equations of the system (10), in view of

eq.(39), since 1 zza(t), and thus also 3a(t), does not have the period P [ see

eq.(12)].

Consequently, for v = 1, ... , P the exceptional case exists while for v =

- p + 1, ... , s the principal case is present; here P = 0 and P = s is admis- /
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sible.

First, let us calculate the vector

" "" n..j J.o
for the special case involved here. According to another paper [(Bibl.l),

eqs.(85) and (31)] and to the notations in that same paper and in eq.(76) (see

footnote on p.32), we obtain

At ~'

Consequently,. taking eq.(38) as well as the first and last equations of the

system (i0) into consideration, we have

4 °i

, avJ I

in accordance with eq.(16).

We then define the row vectors

According to eq.(15),

2* *• (4,3

so that the following is valid for the corresponding column vectors:

Equation (74) (Bibl.1), namely,

X8,, g, t 4, W (45)
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as readily verified by eqs.(44) and (41), has the solution

.V,,,,.x C-1., ,W, , ,..1129 .... Is. (4•6)

periodic with P. Thus, eq.(32) according to [(Bibl.l), eqs.(79) and (77)] can

be written in the following form:

A ,, ,

X(t) (47)

where, in the last transformation, CwT = ( was used in accordance with eo.(15).

Section 3. The Differential Equation Reduced in Order /77

Since the case (36) in the previous Section was taken care of, we can

assume below that*

an t) z an 1 (t) W z a (t) z o, a (t) 0,
n-1 -j+1n-j

n- I3

Using •~(t) -X(j)(t) ,Y -(t .Y(W(t), !9

eqs.(l) and (6), respectively, are transformed into

i[;], •(n-j)+ a (t) •(n-j-1)+ + an (t)- - f(t), (50)

'['. - n-j)÷ a ) (n-j-1)+

Liy 3y a 1 (t) y' n- (5a1)~y=

The pertaining adjoint homogeneous equation will then be

t( J (aZ ~.. %,_ ,,;z .o. (52)

Each solution of eq.(52) simultaneously is a solution of eq.(9).

Conversion of the differential equations (50), (51), and (52) into the

corresponding differential equation systems of the first order, together with

* The trivial case j = n leads to the differential euation x(n) (t) = f(t) with
the reduced equation [see eq.(49) and (50)] - x n)(t) = f(t). The resonance
case or the exceptional case is present depending on whether the mean value

1 1- f(,r)dT is not equal or is equal to zero.

P '
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A L7m

mid ju i(53)

will yield

-t (54)

Aft) ~(55)

arid b * -(56)

with the matrix

SUt) =(57)

. *jr) -L~ . * - . . 1e• %

which is correlated with the matrix ?I(t) as follows [see (Bibl.l), eq.(23)]:

0• 1

Sa- (58)

or a)

Now let /79"A A

A)

S(59)

-. "'" $.

70("-V)
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be a fundamental solution matrix of the reduced homogeneous differential equa-

tion (51) so that, for fi(t), the following representation [see eqs.(14) and

AA

(19)] applies: AAV
S"" , • -- 10e (60)

with the fundamental subsystems:

Vj (61)

and the periodic submatrices:

(62)

Again, let us assume [see eq.(17)] that

0 0 for ,-ta I,..., , (63)

where, as always in special cases, P can be equal to zero or S. In that case,

the matrix ý( t) can be expanded in the following manner to a fundamental solu-

tion matrixq(t) of eq.(6) [see eq.(58)]:
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S-J.~ ,.(64)

fit a

Here, the square matrix V1*(t) is successively constructed by integrating the

first row of the matrix (t) in which case the integration constants can be

arbitrarily selected.

Next, we partition the matrix m*(t), analogous to eq.(61), in the form of
/81

2.. ) *() 7 ,.•Q, (65)

into the square submatrices V91.

Then, we can formulate the following theorem.

Theorem 5: If the reduced differential equation (51) has exactly P inde-

pendent solutions Y(1), 9 2)p ... , Y A) periodic with P, then the differential

equation (6) either will have also exactly ^ independent solutions, periodic

with P, or else eq.(6) will have exactly O + 1 independent solutions periodic

with P. In this case, the following is valid [see the notations of eq.(21)]:

1) If, for all Y(P)(t) (v = 1, ... ,

P

IY(")(t)dt- o, (66)
0

applies, then eq.(6) will have exactly + ÷ 1 independent solutions periodic

with P.

2) If, conversely, for at least one Y(y) (t) (v = 1, ... , P), the following mean

value
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J (V')(t)dt - a t oa (67 )

applies, then eq.(6) will have exactly 0 independent solutions periodic with P.

For a proof, the following simple auxiliary theorem is required:

Auxiliary theorem: Let g(t) be a function periodic with P, for which

J(t)dt a (68)

is valid. Then, exactly one function h(t) = f g(t)dt periodic with P will exist,

for which
t(69)

is also valid.

Proof: For each constant h(o), /82

h(t) . I g(i) d-T +h(o)

is periodic with P. For a uniquely defined constant h(o), eq.(69) will then

apply.

Application of the auxiliary theorem for proving the theorem 5 proceeds as

follows:

1) Let ( dt - o (for,. 1 ,...,.) [see eq.(66)].

By j integrations of the functions Y(v)(t) (v = 1, ... , 6), in which case the

integration constants must be determined each time in accordance with the auxil-

iary theorem, exactly one function y(v) (t) having a mean value of zero and being

periodic with P will be obtained for each y( (t). Accordingly, based on the

trivial solution %o(t) 0, the function yo(t) 1 will be obtained as a further

solution of eq.(6) periodic with P. That this solution is independent of the

above-defined solutions y(V)(t) (v = 1, 2, ... , 0) follows from the fact that

all these y(v)(t) have the mean value 0, while yo(t) has the mean value 1. That,

in addition, the y(V)(t) (v , ... , ) are also mutually and linearly inde-
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pendent follows from the linear independence of the functions Y(v) (t) after j

differentiations.

2) Conversely, if not all Y(v)(v = 1, ... , P) have a mean value of zero, new

solutions can be obtained by linear combination which, again, will be denoted

by - i), S.., ^ 4), that can be so defined that, for example, y(1 ) has the mean

value 1 while the remaining y(v)(v = 2, ... , P) have the mean values 0, i.e.,

:jdt o (Q s , ) (70)

By j integrations of the functions -(v)(v = 2, ... , 8) and in accordance with /

the auxiliary theorem, again P - 1 solutions y(v)(t) of eq.(6), periodic with P

and having a mean value of zero, will be obtained which are mutually and linear-

ly independent. An integration of ^ i) (t) would yield a solution y i) (t) not

periodic with P. However, the trivial solution ^o(t) 0 again leads to the

solution yo(t) 1 periodic with P which, together with the functions y( 2 )(t),

... , y() (t), foriLs a system of $ linearly independent solutions of eq.(6),

periodic with P.

Finally, it is easy to demonstrate that eq.( 6 ) can have no further solu-

tion periodic with P. Let y(t) be any nonconstant solution of eq.(6) periodic

with P; then, y(t) = y(a)(t) will be a solution of the reduced differential

equation (51) periodic with P which, in addition, has a mean value of 0 because

of the differentiation process; consequently, y(a)(t) must be linearly com-

posable of the already known solutions ^(v)(t) (v = 1, ... , P).

It should also be mentioned that the solution vectors 1(t) of eq.(56) must

be completed into the solution vectors 3(t) of eq.(ll) by a successive differ-
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entiation process in accordance with eq.(lO), toward components with smaller

indices.

Section 4. Definition of a Special Normal Form of the Fundamental
System of the Reduced Homogeneous Differential Equation

Unfortunately, for solving the reduced system of differential equations

(54), it is not sufficient to merely bring the matrix A,, introduced in accord-

ance with eq.(14), to the Jordan normal form, in view of the fact that the main

purpose of the theoretical consideration is a discussion of the system (W). For

this, it is necessary to obtain the square matrix M*(t) occurring in eq.(64) in

as concise and simple a form as possible. For this purpose, the fundamental

system (59) of solutions of the reduced partial equation (51) is brought to a

special normal form, which we will characterize by the following properties of

the matrices (62) occurring in eq.(60):

Definition:

1) At Xv = 0, either the following mean values are valid for • (v), .. , [v]

f (Qd 0 for all P(71)

or an index 0 ' iv ! M-V - 1 (m-V [v] - (v) + 1) exists, so that the following

is valid for the mean value:

rVJ+ h =0.for (72)

2) The elementary components are so arranged that, for v =, **., X, sub-

scripts iv exist whereas, for v = A+ 1, ... , •, all mean values (71) are equal

to zero. For v =^ + 1, ... , 0 , we have cv = 0; here, the elementary components

are not restricted.
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3) The orders Mii increase monotonically for v = , ... ,1

A a 3 i (73)

so that the inequalities

A

i > Vl . •,-i-_-I for V.2,...,A. (74)

are valid. The elementary components for which all mean values vanish are also

arranged in accordance with increasing values of myV except that, in this case,

only

applies.

For constructing this special normal form, we will need several new con-

cepts and theorems.

Let [see eq.(li) and the notation (42)], under the assumption of Yv 0,

(76)

be a fundamental subsystem belonging to the vth elementary component. Either

all mean values are
(t)dt o for^= (77)

0
or one iv exists, so that

M^ o for °," (78)

arbitrarily for >

Then, the following applies:

Theorem 6: A regular matrix
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or /86

t (79)

is in existence [see the denotation (58)], so that the transformed fundamental

system it 9 has the property 1.

Proof: Since the matrix S is commutative with the matrix

* ,(80)

it is immaterial, because of eq.(14), whether the transformation IT is applied

A

to the A or directly to the '% . The row vector

4'1 (81)

is then transformed into the column vector

', .•(82)

If, for each subscript 4, the components

M. - (83)

are separated into the constant mean value M1 [see eq.(78)] and into the func-

tion C(t) of a mean value zero, the following applies in a readily understand-

able notation:
*,. . ,, 2" •. . (8!L)

T

The row vector Vv is then to be transformed by the last summand in eq.(82) into

the row vector TV , which is defined by L87
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(85)
M 1 Me^ ,, o for , w. i,

This[see eq.(79)] leads to the system of equations:

o - C(,) MO,)

o - C('3i) M(,,).1 4 (a(,,)

o - C(V,) u(,) 4j.,_1  + .-- + C(a)÷j - U(a,) (86)

C c(") u + .. + C(0)+(,,,A ()

o - C ) +()÷ ÷ ÷ .-- c(,)+i,,+ (' )

L - c(, ) C (•) + + C(+ )u(W)

The first iv equations are automatically satisfied because of eq.(78). The re-

maining equations successively lead to solutions: c(v), c(v),+ , • • c.. ]-.v,

in which case we definitely will have ctv) t 0. This means that v(S is regular.

(In the case that, instead of eq.(62), all M. = 0 (see eq.(77)) one can simply

pose v =(gv.]

From now on we can assume that the fundamental subsystems (^(v) , •.•,

Ycv) ), for all v, have at least the first property of the special normal form.

The further properties can be established by means of the following theorem: /88

Theorem 7: Let, in addition to the fundamental subsystem (76), another

fundamental subsystem be given:

(87

so that, in contrast to eq.(74),

M k k M"- iv (88)

the following simultaneously applies:
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o ', k : (89)

The right-hand inequality in eq.(89) is trivially satisfied. Then, by super-

position of these two systems, a fundamental subsystem ifv analogous to

eq.(76) can be formed for which the functions Ov)j, o...9 Tv], which are peri-

odic with P all will have the mean value zero. In this case, the fundamental

system i1A remains unchanged.

Proof: If the new solutions ykp of eq.(51) are formed in accordance with

the stipulation I V (90)

the following will be obtained, because of eq.(14), for the corresponding func-

tions *: o

A. t, 411tso .--,., (91)

Here, eq.(89) guarantees the correct values of P for eqs.(90) and (91) while

eq.(88) ensures that
(A Of)~~~ - f i.,4 ~ 6 ~

is applicable. It can be confirmed that the functions %2* from eq.(91) have L82

a zero mean value since, for 4 = (v) + iv, we simultaneously have (k) + P -

- ((v) + iv - ii ) = (k) + ik. Thus, theorem 7 is proved.

Now, we can establish a certain normal form by also satisfying the condi-

tions 2 and 3 of its definition. Each elementary component will be denoted by

a pair of numbers (M, iv) or (m^y, myV) if no iv exists. In addition, we calcu-

late the differences my - iv and define a sequence of number triples (my, 1v,

mv - iv) or (iuy, mVP, O). First, the subscripts v with the smallest iv will be

defined. Among these subscripts, one is selected for which My - iv is as large
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as possible. After this, the elementary components or the number triples (iM,

iv, &V - iv) are so rearranged that the above characterized number triple will

be in the first position, after which we set the corresponding v = 1. According

to theorem 7, all other elementary components for which eqs.(88) and (89) with

k = 1 are satisfied, can be so transformed by superposition with the first ele-

mentary component that no more iv will exist for them. The already determined

first elementary component will remain unchanged. Since, in any case iv Ž il

and since, for iv = ii, we automatically have my - iv Si m - il, this means

that the possibly remaining number triples for which an iv still exists, will

satisfy the conditions iv > il and my - iv > m, - il. Of these remaining

triples we again select one for which we will pose v = 2 so that, at minimal iv,

the MiV - iv becomes maximal. Here again, a superposition in accordance with

theorem 7 will make it possible to transform the elementary components for

which eqs.(88) and (89) with k = 2 are valid, together with the above-defined

second elementary component, in such a manner that no iv will exist for them

whereas the number triples for which an iv might still exist will satisfy the

conditions
iV> i2> •and - iM - 2 -M2 - -J 1

We continue in this manner and finally obtain a sequence of elementary compon-

ents with number triples (mry, iv, mkv - iv) for v = 1, 2, 0.., X, where the L90

following is valid for v = 2, ... , X (naturally, A = 0 or A = 1 is also pos-

sible): iV > i, Y.•-i > I_ iI

from which also mSy > ii-:. follows directly. Then, for o'v = 0 the elementary

components with the characterizing triples (my, my, 0) for v = A + 1, ... ,

might possibly be left over, which can be so arranged that mSl - mv-1 (for v =

+ + 2, ... , ') is valid. The elementary components with ey / 0 can remain
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unchanged. This finally establishes the special normal form.

Section 5. Completion of the Special Normal Form of the Fundamental
System of the Reduced Homogeneous Differential Equation
into a Fundamental System of the Original Homogeneous
Differential Equation

The purpose of this particular Section is to obtain proof of the following:

Theorem 8: Based on the special form (59) resp. (60) of the fundamental

system of solutions of the differential equation (51), a fundamental system

9t)-0()-rw (92)

of solutions of the differential equation (6) can be obtained, in which case

V Wt) - elt , &(t . P) - 4 (t) (93)

but where the constant matrix ft does not necessarily have the Jordan normal form

[see also eqs.(108) and (114)].

The proof must proceed in several steps. Primarily, we establish:

Theorem 9: If, in the case av = 0, eq.(71) is valid for all values of i =

= (v), ... , [v] as well as in the case o'v t 0*, the solution submatrix vnF [see

eq.(61)] of eq.(51) can be thus completed by a matrix ff* into a solution sub-
V

matrix "P of eq.( 6 ) such that, once more,

19~ X e (94)

is valid.

Proof. First, let us consider the case j = 1. So that the direct argument

T3a' t 31 (95)

S Andthusalso•v /2kT~i
* And thus also ov /-p- [see (Bibl.l), eq.(20) with q = P].
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(see eqs.(81) and (80)], after one differentiation, will lead to /L2

111 (96)

the existence of the following differential equations for :(v)(t), P(v)+ 1 (t),

•.•, [CP (t) will be necessary and sufficient:

* A

: (97)
YE1 ,j t-r., Irv rIf'fl,'J ~ ~ ~ ., E''':'3 ""i,13 •-'I"

from which, because of the two possibilities of theorem 9, functions P(,)(t),

•*-., cpv](t) periodic with P can be successively determined for cv; these will

be defined uniquely in the case av t 0 whereas, in the case cv = 0 if eq.(71)

applies, they will be defined uniquely only if it is additionally stipulated

that all mean values are zero. In the case of j = 2, the same method of reason-

ing is to be applied first to

T r e"I (98)

instead of to eq.(95), after which the TCpv is determined from eq.(95) according

to the same syllogism, by substituting eq.(96) with eq.(98). The procedure is

wholly similar for the remaining values of j. From this, eq.(94) of theorem 9

will follow if A

(I, ~(99)

is also taken into consideration [see the equation corresponding to the second

relation (I)].

This leaves the case ov = 0, at validity of eq.(72), to be considered. Un-
T

der introduction of the vectors nv with the components /9

I [for ,- -WS

Sfor. jo (100)
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we resolve
T T (101)

As in the proof for theorem 9, we can first determine a uniquely defined row
~ , T h)

vector 2cv with the mean value 0 so that the jth derivative (notei v

1C T ,w
of C e, is exactly v *e By j integrations of nv " e weob-

tain the row vector

( o,...,o,-I.. 1' 1) (102)

From this, we have:

Theorem 10: In the case av 0 and eq.(72), eq.(94) will be replaced by

wt Vjh "IQ *e t (103)

W I

o ti , 2 (104)L T
Instead of eq.(103), we can also write

% t
S(105)

Finally, j integrations of the trivial solution system

AT7 (0 ( ... ,o0) (j zeros)

will yield the row vector

I'l" (t,,.-, r (106)

from which the solution submatrix

_(107)
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is obtained. By adding the matrices '@ of of theorems 9 and 10, we form

the matrix ý*(t) and write 4

EI~s (108)

Similarly, we form (see theorem lC)* the quantity b*(t) by addition of the ma-
trices 'J.1?*(t) according to eq.(1O4) and then, taking eq.(107) into considera-

tior, put 41 ft)

•t (109)

This will yield a fundamental solution matrix m'(t) of eq.(6) in the form of /95

eq.(92), where aýLready the second equation of the system (93) possesses validity.

To furnish a complete proof for theorem 8, it merely remains to be demon-

strated that eq.(109) can also be written in the form of the first enuation of

the system (93). This is automatically the case if no ev = 0 with the validity

of eq.(72) are present, i.e., if the theorem 10 need not be used. Then, the

matrix Vt) of eq.(109) will already have the conventional form:

eJ-'n

eW- £ 7 = e (110)

with

* In the case of theorem 9, we must use ve(t) = 0.
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and

° •(112)

of the order ub j. Here, A has the Jordan normal form.

Generally, the following theoren applies: /96

Theorem 11: The matrix t(t) according to eq.(109) has the form of

- (113)

with

(114)
A

where, in addition to the components Ao, i, ... , S,, only the matrices*

* a
- (115)

• For the mearing of X, see the definition given in Section 4. In the case X -

= 0, eq.(116) is transformed into eq.(ll0) or eq.(114) into eq.(1ll).

85



with a 1 in the jth row occupy the position 1 ÷ iv. In the case X > 0, eq.(ll4)

will not have the Jordan normal form.

Proof: Explicitly, the matrix 1(t) reads as follows [see eqs.(109), (104),

(107)]:

(116)

By differentiation of t(t) to t, we obtain /98At &I A a .

C A U

°°I

e:I I -~(117)

61

A+.1
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with (note: Av =4v for v - i, ... , X)

b. J0

, @ O.... , " ,...,t. , V ,.•, , -,

[o..0,,, ,., -. / / ,

AL,1

i.e., according to eqs.(104), (107), and (115): /99

t (118)

Hence, eq,(117) will yield

a.-. , {[...

(119)

LAt

From this, on the basis of eqs.(116) and (114), the following equation can be

read off: I
-St(t) - ý (t) * A (120)

Further, in accordance with eqs.(116) and (104), we obviously have
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Co). (121)

However, eq.(U13) follows from eqs.(120) and (121) [see, for example (Bibl.3),

Sect.3.4]•

As a corollary, we should note: For the matrix $, defined in another /L10

report [(Bibl.1), eq.(lO)] and which is constant in accordance with the same

paper (theorem 1), the following is valid:

* i s1 j(0) 19(P) - V P) P *(122)

For this, besides eqs.(92) and (121), only the second equation in the system

(93) as well as eq.(113) are needed.

Sectio-r 6. Construction of the Jordan Normal Form for A /101

Now, we will have to bring the matrix 0, defined in eq.(ll4), to the Jordan

normal form W by a similarity transformation:

A 0 .C- 1 of #r (123)

The pertinent fundamental solution matrix of eq.(6), according to eq.(lh) and

according to our first paper [(Bibl.l), eq.(14)] will then read

dcot
19(t * jo(t) -0(124)

This consideration is necessary only for X > 0 in eq.(114); at X = 0, we can

put S = 9. The collineatory transformation (123) is performed in j individual

steps, in which case, for P = 1, 2, ... , j the similarity transformation

S(125)

will produce a chain of matrices P whose first link (P = 0) is formed by the

matrix Of = R and whose last link is formed by the matrix 'A = R'. In this

case, each matrix PR will have the following form:
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S• (126)

where the matrix has the order (j p), w the mr

(for v 0, , have the orders

"%,I Min.• ,,.),• •) (127)

For the quantities which occur in eq.(127) and are not yet defined, the follow-

ing must be set n• o a 1 0 m i n • h • • ( 1 28)
00

Obviously, °mv = MV. The matrices StAV, also occurring in eq.(126) and having

Pmv columns and j - L rows, contain a 1 for P < iv in the last row and in the

(1 + iv _ p)th column and also contain a 1 in the last row and first column for

iv .P < iv 1, but otherwise only zeros. In the case P 2 iv+ I, the quantity Av

is the zero matrix. Here, the undefined ij+÷ constitutes no restriction.

Obviously, J11 = Ao has the Jordan normal form while, for p = 0, the quanti-

ty o A = A according to eq.(114) has the form of eq.(126). It should be noted

here that, because of ° 0n = 0, no matrix °fjo resp. 00o occurs. In what follows,

we will make an induction from P - 1 to k. For this, we define a subscript

.(() for each P = 1, 2, ... , j in the following manner: If 4 falls into one of

the intervals with the end points il, i2 , ... , iX (the left-hand end point is

* See the definitions at the beginning of Section 4.
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included in the interval while the right-hand point is excluded), we will denote

the left interval end point by it(4). Thus,

£(in $ for 1 ,(~ < 4 (129a)

For the not yet covered values of P, we assume

0 for < 4.1 (129b)

A f o >'O -i A( 1 2 9 c )

The following relations, derived from eq.(127), should be noted: /103

a-Mil o -t ,ri. (130)

where eq.(21) had been taken into consideration, as well as

and
A

"u - for V > A • (132)

It is useful to repeat the matrix (126) in a more detailed form (for 4 >

> 0):

(133)
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The matrices , in eq.(125), to be constructed next, have a differing LO

structure depending on whether the indices 4 - 1 and iA belong to the same or to

different intervals (129a, b, c).

First case: We have

a Lt...j(134 )
i.e., the following is valid:

or, in the two limiting cases,

"#<,^- " <'<4, for <, , (135b)

j< . 4- for L 00 (13 5c )

In this case, we put

where, at first, we assume that .-,,

,I,
4,

(137)

4'4

The orders of the unit matrices (-9, -o, -. , • correspond to the /105

orders of the matrices p- 1 -'o, ... , 1-1 in the matrix ýL-l [see

eqs.(126) or (133)]. The matrix P•v, as already shown in the matrix (137) is

a null matrix if the matrix P-Rv is also a null matrix. The remaining matrices

f for v Ž X are calculated on the basis of the transformation
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- (138)

ILI

from which it follows specifically that also the matrix •%(4 - 1) is a zero

matrix.

Relative to p-i~v with v > k(P - 1), the 1 in the last row in pV is

shifted one place toward the left. in the case of the ones in AV

with v > J.(4 - 1) are supplemented by a 1 which is shifted by one unit toward

the left top. Since Kv-' is formed from (Sv by replacing the ones in the IvV

by -1, all ones in - g-i in the (j - p)th row of •-'d vanish except for

the 1 in the first column of p-1 (4- 1) in the case of LL > 1.

This means thaL the matrix (Tp- • -1tp* = p* has the property that the

ones standing in the matrices P-'Pv for . > t(4 - 1) are shifted by one place

toward the left top in a diagonal parallel to the main diagonal, while all other

elementary. components of the matrix 4-1A are retained. Specifically, the one in

the lower left corner of the matrix P-iAt( - 1) remains fixed for . > 1.

Next, we perform another similarity transformation with the "permutation

matrix" 24 which is produced from the n-row unit matrix, by supplementing /106

the rows and columns having the numbers

(the next following column exactly has the 1 in question) with the cyclic trans-

formation matrix

[1.. .3(139)
In the case P < i1 [i.e., t,(4) = 0], we must put 2. = (y because of the fact that

no excess 1 need be eliminated here. It should be noted that
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In •L" "%, the 1 which, until now, had been in the (j - i. + 1 )th row at the

(rjjj + 1 )th place, has been shifted to the place directly diagonally above the

still to be eliminated 1 which remains at its place; all matrices in the k-lov,

located within the range of the matrix (139), are shifted by one unit toward

the left. In the case of %- * " the same P-1 v are shifted by one

unit toward the top while the 1 in the (j _ P)th row remains unchanged; the 1

standing diagonally toward the lower left, which is to be eliminated, has been

shifted in the same column into the last row of S., differing from the corre-

sponding row of the unit matrix, and thus changes P-1(OQP' by one first row

and column to a with an order greater by one [note: %L(t) = 4(L - 1].

Consequently, all in all the new similarity transformation with % shifts the

one, still standing at an unwanted place, by one place toward the left top, in-

creases the order of toward the left top by one, shifts the matrices

4-1 0 - I1 J, ... , -L@0(pjj by one place toward the left top, and finally

decreases the order of P-1i by one. This means that P receives the order

j - P while 4,(,) receives the order Pm4(p.) : p-Imt(nJ_)+1. The other orders

are retained [see eq.(127)]. The ones in the (j - P)th row are now standing /107

as stipulated by eq.(133). Consequently, in this first case we have transformed

the matrix A-S with (1 =(Y in a similar manner into the matrix PA.

Secund case: In contrast to eq.(134), we assume

i.e.

and, respectively,

o ~.-1<9L or ~'<-t '(142b)
,A&-4(i<~4~;or

(142c)
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Obviously, more accurately than eq.(141), we then have

+ ~-1 end 0 (143)

As in the first case, we first use the similarity transformation with the ma-

trix (* " As a result, we obtain the matrix

41 d~/~ (~144)

in which the ones are standing in the (j - P)th row but [see also the second

equation of the system (143)] are now, for v = t,(4) - 1 as well as for v = Q(O,

shifted to the first column of .•iv. Consequently, the matrix P A differs from

the matrix PR only by the one at the place L(P) - 1 in the (j - P)th row which

is not present in @I.

For eliminating this one, the following transformation is introduced:

& *)ý,"w = (145)

with the "superposition matrix" •B(,) which is obtained from the n-rowed unit /lC

matrix if a 4mC( )_,-rowed negative unit matrix is introduced there, as shown

in the matrix (146):

(146)

I9
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In this case, the unit matrices have the same orders as the corresponding -ma-

trices A @o, , *. ., in the matrix (133). The quantity C-L is obtained
by substituting in the inserted matrix _ 1 _ 1 Already ft

has the prescribed new orders of the 8-matrices in 'A. Specifically, the order

of has increased by one while P-L o has received an order lower by one.

The application of ttp) to * P eliminates the superfluous 1, but brings the /109

matrix - 1AOV)_. to the same place at which is located in the matrix

(146); application of %-'L to the left-hand side will again eliminate this

auxiliary matrix so that we finally obtain 1*j. Consequently, in this second

case we must put
(4

As the overall result of our considerations, we then obtain:

Theorem 12: The matrix A, by means of the similarity transformation (123)

with 'W= 4 t1 (148)
is transformed into its Jordan normal form

(149)

Here, the matrices • are defined by eqs.(136) resp. (147), with the auxiliary

matrices (137), (146), and the described . The elementary compoa'ents If, for

0 • v g X have the following orders my [see eq.(127)]:

S.m,, + Min (j,iV÷+1 ) - Mm (ji), (150)

where, accordingly, we must put v = X [see eq.(128)]

Mn (j,i,.) - j, (151)

for v 0:
." o " 0 (152)

SBy means of such a superposition matrix F8, the proof of theorem 7 can be con-

ducted explicitly and simply, in a concise manner.
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In the case of mb 0, the elementary component RPo will vanish. At v > X, /110

i.e., if either Xv ' 0 or if no iv at all exists at civ = 0, the following is

trivially valid:
MW a 2, , specifically, no - .1•

Another remark should be made here as to the correlation of the rows s

and 8. In accordance with eq.(17), s denotes the number of elementary com-

ponents in the original Jordan normal form of A so that s also will be the num-

ber of elementary components of eq.(149), which means that

S. t i , if/ no > o ( 5 d
. 1 , if no = o •

is valid. It is obvious (see theorem 5) that "b is zero if and only if the

mean value (67) differs from zero for at least one Y^v)(t) (v = 1, ... , P) since

then we have, correspondingly, iv = 0. In the special normal form (see the

definition in Section 4), we will have il = 0 according to eq.(74) and thus,

according to eqs.(150) and (152), nb = 0.' In the other cases (ij > 0, or ab-

sence of iv), we have rb > 0 [see eq.(153)].

It is useful to give an explicit computation of the transformation of 9

into the Jordan normal form, using a simple example in which all possibilities

occur. Let
j.4, I1.3, 2.5, M 3 =8, n=2o, i1 -2, i2 -31 i3-5. (155)

The general idea is demonstrated in the following matrices:
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Section 7. Solutions of the Adjoint Homogeneous Differential /115
Fuation of the nlt Order

The solution matrix '(t) of eq.(6) conjugate to • in eq.(149), can be

calculated in accordance with eqs.(124) and (148). Since, however, the condi-

tions for the resonance subcase and for the exceptional subcase [see eq.(28)]

contain the solutions J(t) of the adjoint homogeneous system (11) periodic

with P [respectively of the adjoint homogeneous equation (9)], we will discuss
this first. Analogous to eq.(1214 ) and because of eq.(13), we have

We then again decompose the transformation (, into the j subtransformations N

according to eq.(148):

after which, we will investigate the individual matrices u(t) fcr i --, 1,

S.., j, whose first and last matrices are

(1)ýCWrep (158)

We then partition the matrix 4,3(t), in accordance with the structure o: f in

eq.(126 ), into - + 2 submatrices

g ( O .V ( 1 5 9 )

where 3 , in addition to zero columns, contains only the first j - 4 columns

of 3, while ) contains the next irr columns, .i the next following m,

columns, and so on.

It is useful to introduce the following notation:

"^•U• •-•t•. '. 1 f" - J P'^-o'" (160)

In the last step (@ = j) we will omit the superscript [see eq.(150)]:

Z ,.4-. (161)
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Then, the following theorem applies: /116

Theorem 12 The solutions Ecv] (t) (v 1 I, 2, ... , s) of eq.(52) periodic

with P are, in the same sequence, identical with the solutions zCvC]) (t) of

eq.(9), again for v = 1, 2, ... , 0. Consequently,
zd4 (t) - z[o(t) for Y. (162)

Proof: In the matrix 0 3(t) according to eq.(157), the solution vectors

periodic with P and resulting from the periodic icv, (t) for v = 1, ... , s, are

exactly the Acvj (t) which means that they are standing exactly in the last

column of the 09v(t) for v = 1, 2, ... , *. A successive application, on the

right-hand side, of the transformations described in the preceding Section

)T and 08-1 )T (if they occur at all) to the matrix "'-3(t)'

will transform the last column of each P-tv(t) unchanged into the last column

Of P3v(t)(v = 1, 2, ... , s). Consequently, also the last component of these

columns will remain unaltered. By this inductive syllogism, the proof for

eq.(162) is obtained.

In the case ub > 0, i.e., i1 > 0 or nonexistent, a further solution of

eq.(9) periodic with P will occur in accordance with eq.(154) and theorem 5.

For this, the following is valid:

Theorem 1 : In the case m > 0, the auxiliary solution vector periodic

with P is present in the last column of 33o(t); its last component which, con-

sequently, must be denoted by ZCCo03 (t), has the following form:

S D13 A

W_ W EY (163)

If no iv is present, i.e., for v > X, the last sum naturally is omitted. /117

Proof: First, it should be remembered that the quantities j PP, occurring

in eq.(163), originate from the last (jth) rows of the matrices 10 in eq.(105),
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whereas the quantities *I(t) originate in the last [(n - j)thI row of the ma-

trix (see eq.( 6 0)] 4_ (164)

where the row index n - j has been omitted here. Since all these functions are

periodic with P, this statement is valid also for the expression (163).

A column of Jp3o(t) = go(t) occurs for the first time as the only column

of 1 8o(t). Since this column, at increasing P, always remains the last column

of •S 0 (t) with P > 1, it follows - as in the proof of theorem 13 - that tids

column cannot change anymore. Consequently, we have only a single column

vector 1 o(t) of '3o(t) which is located in the jth column of I3(t); its last

component is the sought ZECo]J (t).

In the case il > 0, formation of '3(t) =(t) 3 5 1 -1)T will directly

yield Z IV= A Z It)

A Ac2-t - (165)

It should be recalled that the last row index n or n - j had been omitted in the

elements of 3 or ý. In the case that no ii exists (P > X), the second sum is

eliminated.

According to eq.(13) and in analogy with eq.(64), we have

7in=~J9 ~ t 3 [T ~(166)

with /118

4^2= -1 wd Mee 4 i . (167)

as is readily verified from the relation
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Taking the definition of V(t) in eq.( 6 4) into consideration and also consider-

ing that ,zs(t) is the element in the right-hand lower corner of 3T(t), the

following is obtained from eq.(167):

S

where [see eq.( 64)]

~fl -J 4 (T4L'L(169)

is valid. According to eq.(165) this yields the intermediate formula

W61 (170)

Denoting, by C(v)+i.v_., a mv-component vector which, in addition to zeros,

contains only an i in the ((v) + iv- 1 )th component, the vth subsum of eq.(170)

can, be written as follows for v X:

Y~ Zcv ('1

( i Irv.] C-[ ,

Taking into consideration the formula for the reduced differential equation,

which is analogous to eq.(43) and, in its subdivision, analogous to eq.(65) as

well as considering eqs.(103) and (104), we will obtain

/119

T: At A, t

" "',, e • e (171)
1 .
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where the 1 as the ((v) iv _ )th component of the last vector originates

from C(v) + iv-1. This last vector, however, is exactly e • C(V)÷IV_1 so

that we obtain further

(172)
7

jqj
1 ) for o

In the case v = X + 1, ... , ^, taking eq.(94) into consideration, the last

vector in eq.(171) is omitted. This will yield

T V t. t or ,-A......b. (173)

From eqs.(172) and (173), we directly obtain eq.(163).

In passing, we note the following:

Theorem 15: The function ZcEo]3 (t), investigated in theorem 14, satisfies

the inhomogeneous reduced adjoint differential equation

"L[a tt'' ) t ' • 1 (17 4)

Prof:1 In view of eqs.(52), (56), and (57), it merel]r must be demonstrated

that a solution vector i
- -(175)

with /120

-WCt)M

(176)

exists whose last [(n - j)th] component is ZE[o03j(t).

The variational method for the constants (see (Bibl.1), footnote 9] fur-

nishes the following relation as the general solution of eq.(175):

A )M4(1

with an arbitrary constant vector C and, as the last component,
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Wa3 t (r mi +C, (178)Sv.,1

According to the general theorems [see, for example (Bibl.l), eqs.(16) and (17)

and the context there], eq.(175) has a solution vector periodic with P if the

following applies for all solutions of eq.(55), periodic with P:

_-! ., r -=o for ,,-,

This is exactly the condition for m > 0 [see for example the remarks after

eq.(154)]. Consequently, eq.(178) can then be determined as a function periodic

with P. The lower limit in the integrals can be so defined that c. = 1 applies

for P = (v) + iv - 1 (V = i, ... , X) while it has a value of zero everywhere

else. Now, eq.(178) obviously coincides with eq.(170) which means that theorem

15 is proved.

By j differentiations of eq.(174), we again verify that zCCoiJ (t), obtained

from eq.(165) or en.(170), is the solution of eq.(9).

Section 8. The Minimal Order of Magnitudes of the Solutions and /121
their Derivatives for the Resonance Case

With respect to the resonance case for the differential equation (1), the

following statements can be made: The adjoint homogeneous differential equa-

tion (9), as defined in the preceding Section, has the solutions ZEcojj , ZCCX13,

0.., zEI•1 periodic with P, where ZECE1] , --. , z 3g$3 according to theorem 13

is identical with the solutions Zc^3 , ..- , gt j periodic with P of the adjoint

homogeneous reduced differential equation (52) and ztco], occurs only in the

case of nm > 0. Consequently, if the resonance subcase exists for the inhomo-

geneous reduced differential equation (50), for an index v > 0, i.e., if the

following is valid [see eq.(28)]:

106



() j " d f - - ,(179)

then the resonance subcase also will exist for the inhomogeneous differential

equation (1) for the same index v; consequently, we then have

2
I ,rc," c ;,,r -d- #r (180)

Speaking generally, we will denote any index v, i.e., also v = 0, as a resonance

index provided that the resonance subcase exists for this v. Thus, we have the

following: If v is a resonance index of the reduced differential equation (50),

then v will also be the resonance index for the differential equation (1).

We must now differentiate between the following cases:

I. No resonance index exists.

II. v = 0 is no resonance index, but at least one resonance index

v > 0 exists.

III. v = 0 is the only resonance index.

IV. v = 0 is a resonance index, and at least one index v > 0 exists

which also is a resonance index.

The points I and II also contain cases in which the solution zEEo03 is not

present, i.e., in which il = 0 applies.

In the Case I, either the principal case or the exceptional case is /122

involved for the reduced differential equation (50). For the differential equa-

tion (1), at ii = 0, the same case as fo- the reduced differential equation (50)

is involved. At ii > 0, the exceptional case is present for eq.(l) since at

least one solution ZCEo0j , periodic with P, of the adjoint homogeneous differ-

ential equation (9) exists.

In the Case II, the minimal order of the power increment I of •(t), accord-

ing to theorem 2, is determined by
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a-. Max (181)

while the analogous order of increment m of the solution x(t) of eq.(l) is de-

termired by
m -Max (Ia,)

,.._.,/(182)

with my according to eqs.(150)ff, with the resonance indices being the same in

both cases.

In the Case III, the resonance case is not present for the reduced differ-

ential eouation (50) but is present for the differential eouation (1). The

resonance order for x(t) is defined as [see eos.(150) and (152)]

M - Mo .min (j, i1 ) , (18?)

where, if no il occurs, eq.(ll) must be taken into consideration.

In the Case IV, the resonance case exists for the reduced differential

equation (50) as well as for the differential equation (1). The resonarce order

for x(t) is defined by
M - Max (m') (18,)(,A... ,

In determining the maximum, the quantity nb can be disregarded if, for at /123

least one resonance index from the interval 1 • V < 8 one iv exists; ir that

case, the corresponding mv > rio according to eq.(150) because of £• > 1 >

> rm(j, ii); see also the definition at the beginning of Section /.

Similar statements apply also to the derivatives x' (t), x"(t), ... ,

x('-')(t) if, in the cases I to IV, the index j in the kth derivative x.') t)

in eq.(150) for the my is replaced by (j - k). The given incremert orders, in

the case of resonance, are always the minimal orders. It is entirely possible

that, for example, x(t) represents a solution with minimal order (with the i!.-

dex j), while the correspor:ding derivative x' (t) has a higher order than the
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minimal order valid for j - 1. Conversely, it could be that x' (t) is a solu-

tion with the minimal order valid for j - 1, while the once integrated function

x(t) = r x' (t)dt has an order which is higher than the minimal order valid

for j. This is due to the fact that, for different indices j - k, no differirig

determination of the parameter constants is necessary if a solution with minimal

order is to be obtained in each particular case.

For explaining our discussions, the following example is used:

Let m- = 3, n = 5, 1 = 8, % = A, i = 10

ii = 2, i- = 3, i, = 5; i 4 and is do not exist.

Consequently, it follows that

A

s = 5, S. 6, n-j = 30.

First, we again compile the formulas which are valid for the orders my [see

eqs.(150) - (153)]*:

M ". m, + Hin(j,iy 1 ) - Min(.,i,)(for 1.= 1,.... -- 1)

,n - ÷ .) - uin (jj 1•) (185s)

,M m, (f or v, a - A . .+)

Accordingly, the following results are obtained for the new j-dependent orders:

fj for _2
m 0 . Min (2,j) {2 for j> 2

{3 f or <2

mi - 3 + Min (3,j) - Uin (2,j) - C f 2

j 65~ for j .'4

m2 - 5 + Min (5,j) - Min (3,j) = 6 for i 4
7 forj i5

m 8 + j _Min (5,j) 8 for J 1 5

8 + for j 6

m 4  4 + j - = 4

m5 5 10 + j -j - 10.

' If the definition (19r) is used, eq.(185) can be made more rigorous by re-

placing the index X by y.
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This results in the Table:

j.o 1 2 3 4 5 6 7 8 J>

M o 1 2 2 2 2 2 2 2 2

M2 5 5 5 5 6 7 7 7 7 7

M3 8 8 8 8 8 8 9 10 11 J+3

M 4 4 4 4 4 4 4 4 4 4

35 10 10 10 10 10 10 10 10 10 10

Of these numbers, according to eq.(184), the maximum must be formed at fixed j,

for the indices for which the resonance subcase exists. /125

For example, if the resonance subcase exists for v 3, then m will be at

least equal to ms. In any case, however, we is the maximum for j Ž 6 so that

m = me = j + 3 applies for j z 6. This means that the minimal order m finally

increases linearly with increasing j.

Conversely, if the exceptional subcase exists for v = 3, the quantity m

will never be larger than m. = 10. If the exceptional subcase also exists for

v = 5, the quantity m will never exceed ft = 7; and so on. It is easy to demon-

strate that m retains a constant value if the exceptional case exists for V =3,

at least beginning with a certain index j.

In general, it is easy to confirm the following theorem on the basis of

eq. (185):

Theorem 16: If the resonance subcase is present for the index v with the

greatest existing iv, i.e., for v = X, the minimal order m, beginning with a

certain index j, will increase linearly with j (see also the definition in

Sect.4). Naturally, this index X is already defined before the special normal

form is established. Conversely, if the exceptional case is present for the
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7

index v = X, the minimal order m will remain constant in any case, beginning

with a certain index j. In all other respects, the behavior of the minimal

order m, as a function of J, follows from the formula (184): m = m(j) is parti-

ally piecewise constant and partially increases linearly with the slope one.

For each index v for whichaniv exists, the pattern of a broken curve will

be obtained according to eq.(185) for the minimal order my as a function of j,

which has a horizontal slope for 0 ! j < iv and for iv+1 ! J, whereas it has the

slope 1 for iv - j ! iv+ I.

Par o *< j< i. we have a, =^m,

for iVP 3 we have m, + (iv+1 -i,)
frt i v, < J '< i,÷,+l e h ave v . M 0 + (0 - i ") ,

where, if iv-? no longer exists (v = X), the last law is valid for all j : iv:

"/126

I ,

I ,
H

*

Fig.1

Since the following relation always is in question for two indices v2 > v1 with

existing iv3 and iv1 [see eq.(74)]

the curve for the index va will begin with a constant which is greater than the

end constant for the index v 1 , i.e., the curves for the various indices vi and

v 2 with existing iv do not intersect. For each index v for which no iv exists,

my = mv will be constant for 0 < J.
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Thus, the following statement is obtained for the minimal order according

to eq.(184): Let v be the highest index v with existing iv for which the reso-

nance case is present. In addition, let v be the highest resonance index at

nonexisting iv. Then, the following obviously applies (see definition 3 in

Sect.4): M - Max (mv) . Max (A, Mj), (186)

where the pattern of mv as a function of j, yields a broken curve (see Fig.1),

while my is a constant.

We would like to mention'a few interesting relations: In the case that /127

only v = 0 is the resonance index of eq.(l), i.e., in the case III, at least

one solution i(t) periodic with P of eq.(50) exists as we already know, whose

mean value can be either equal to zero or different from zero. Then, the fol-

lowing theorem applies:

Theorem 17: If il = 0, i.e., if no solution zfco]3 periodic with P of the

adjoint homogeneous differential equation (9) exists, then - if at all - solu-

tions •(t) of eq.(50) periodic with P will exist whose mean value differs from

zero, as well as solutions whose mean value is equal to zero.

If il > 0 or if no il exists and if a solution i(t) periodic with P whose

mean value differs from zero is present, then also every other solution i(t)

periodic with P will have the same mean value differing from zero and v = 0 will

be the resonance index. Conversely, if a solution i(t) of zero mean value and

periodic with P exists, then also all other solutions i(t) periodic with P will

have the mean value zero and v = 0 will be the exceptional index.

Proof: We can write the general solution i(t) of eq.(50), periodic with P,

in the following form:

gx + )11 2, Y()(t) (187)
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where R^*(t) is a special particular solution of eq.(50), periodic with P, while

the sum next to it represents the general solution, periodic with P, for the

homogeneous reduced differential equation (s5).

In the case il = 0, the quantity y(1) will be a solution, periodic with P,

of the homogeneous differential equation (50) with the mean value 1. The other

solutions Y(v)(v = 2, ... , 0) of the homogeneous differential equation (50)

have the mean value 0. This shows directly that, by a suitable selection of

the constants cl, the solution R(t) car, be made to have a mean value of zero.

Conversely, it is also possible to make certain that ^(t) has a mean value /128

differing from zero.

For il > 0 or for nonexistent ii, all solutions y(v), periodic with P, of

the reduced homogeneous differential equation (51) will have the mean value

zero. From this it follows that all solutions R(t), periodic with P, must have

the same mean value as .*(t) (the case 0 = 0 is included here).

Then it merely remains to be demonstrated that

0 ti 0resonance
from R(t)dt it follows j = V =0 exceptional} (188)

We will demonstrate this indirectly: If, for the differential equation (1),

the exceptional case were present, i.e., if v = 0 would be the exceptional index

[the principal subcase cannot be present for v = 0 since the homogeneous differ-

ential equation (6) has at least the solution y(t) 1, periodic with P], a

solution x(t) of eq.(l) periodic with P would exist whose jth derivative

ý ')(t) = x(t) is a not identically vanishing solution, periodic with P, of the

reduced differential equation (50) with the mean value zero. However, this

would mean that all solutions R(t), periodic with P, necessarily must have the
P

mean value zero. If, consequently, F.c(t)dt / O, it follows necessarily that
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P
S= 0 is the resonance index. If, conversely, F i(t)dt = 0, a solution x(t) of

o

the differential equation (1) can be obtained (see the auxiliary theorem in

Sect.3) by j integrations of the function X(t), which is periodic with P and has

a mean value zero. This means that the resonance case cannot exist for the

differential equation (1) so that v = 0 must be the exceptional index since the

main subcase had already been excluded above for v = 0. This proves theorem 17.

From this theorem, the following statements are obtained: Whenever the /129
p

quantity I ztt0 (t) f(t)dt differs from 0, i.e., whenever v = 0 is the reso-
0 P

nance index, r i(t)dt will differ from zero for a possibly existing periodic
.0 

p
solution ^(t) of eq.(50). Whenever Y ztto] (t) f(t)dt is equal to zero, i.e.,

0 P
whenever v = 0 is the exceptional index, the quantity . x(t)dt will be equal to

0

zero for a possibly existing periodic solution R(t) of eq.(50). Consequently,

a relation must exist between the mean value of such an R(t) and the mean value

of the function Ztco3] (t)f(t). Thus, the following theorem applies:

Theorem 18: If, in the case il > 0 or nonexistent il, the reduced differ-

ential equation (50) possesses a solution R(t) periodic with P, the following

equality will apply: 7 (

jqz0~t)f(t)dt - S "(t)dt.(l)

Proof: This can be proved by means of Lagrange's identity [see, for ex-

ample (Bibl.4), Sect.5.3]

( = 1- ) in the following manner: I
Using [see eqs.(50) and (174)]
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L r~ (t) and L4so~

we obtain

dt L i o
(t) f (t) - "ct) - 5(190

where L*[x, zcCo]] ], because of the periodicity i(t) and ZEEojj (t), is a func-

tion periodic with P whose derivative, obviously, has the mean value zero. From

this, the argument is directly obtained.

Section 9. The Order of Magnitudes of the Derivatives of the /130
Solutions in the Resonance Case

In statements on the order of magnitude of the derivatives of the solu-

tions x(t) of eq.(l), for the resonance case, it is of importance whether the

solutions Y((v)) (t) = cp((v))(t) [see eq.(14)] of eq.(6), periodic with P, are

constant for v = 0, 1, ... , 0 or whether they actually depend on t. Here,

eq.(21) and thus also eq.(161) are analogously defined:

(191)
+Min (Cj,i,) + 1 . 0,) + Min (3,1,).

For this reason, let us start with an auxiliary consideration which describes

the transition of the matrix ý(t) from eq.(108) to the matrix 49(t) from

eq.(124). Primarily, according to eqs.(124), (14), (92), (113), and (123), we

have

i.e.,

ff1- ."1" (192)

with (S from eq.(izA8). In the elements of the column blocks v(t) with v = 1,
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000P X of 1(t) from eq.(108), the partition is made analogously to ea.(1Ol).

Then, we can write

where the matrix T(t) contains only zeros in the columns 1, ... , j, and contains

kC01(t) of zero mean value in the columns j + 1, .... n; the matrix P contains

only ones, etc., in the first j places of the main diagonal and, on partitioning

(in a readily understandable symbolism)

.t -£t , ' '. (194)

into Q, it will also contain ones in the diagonal below -05 beginning at the

element vtj+1, (v)+iv. For this concept, it is necessary to consider not only

eq.(105) but also the fact that the rows of M(t) result from each other by suc-

cessive differentiation [see eq.(8)]. An application of the transformation ma-

trix (S to t(t) furnishes, in all columns, always only elements of zero mean

value. For this reason, the effect of the individual partial transformations

(148) and (147) on P will be investigated first.

7or greater clarity, we will do this on the example (155) given at the end

of Sect.6, with the exception that now j = 7 (instead of j = 4) is used so that

all imaginable cases [see eq.(185), specifically the third relation] will be

covered by this example. The matrices (;, A(,) and S, constructed earlier,

need now be only supplemented by 7 - 4 = 3 ones, placed in front of the main

diagonal. The following 19 matrices perform the stepwise transformation of P_

into° P0  -.
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'/14

IaI,

It is also useful to perform a stepwise transformation of the matrix t(t)

into $"(t) on hand of the same exarn±es. This will be done in the following /136

U1 matrices where (except for a few obvious exceptions) only the column indices

of the functions Mv(t) = cv(t) occurring in eq.(1Ol) are given, which at first

appear in the (j + 1 )th row for T(t) = lo(t).
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Let the first row of the matrix tj = Qj again be written explicitly

for the cases J = 1, 2, 4, and 7, i.e., y = 0, 1, 2, and 3; X = 3; ii 2; L1W3

i= 3; ij = 5:

Since, in the general case, the considerations are completely analogous to

this example, we can formulate the following theorem:

Theorem 19: If j is located in the interval

i ( W ;46 jig, i+ is no lmit), 15

the following is valid [see eq.(97)]:

-- f(I) for ,=.,/...,V- .,

~ if( ifi forJ 3e0  -

A (196)
U.) for v= '*,.-..

'.r v) it for , .

(where the last row is of no interest); in addition, we have the following LL

in the case j t iy
-. y ,- 1bi ...-.. ,whi-, e t (197)
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where the function c(M))+J-Iy-1 occurs only in the case of j - iv > 1. Here,

we have e(")(t) $ con•t. for Y- (198)

[This latter follows from eq.(95) or (97).M

Let us now consider an arbitrary normal solution x(t) of eq.(l), which we

will retain in what follows, and let us make statements 6 n the increment of its

derivatives x(k)(t)(k = 0, 1, ... , n - 1). For this solution x(t), eqs.(19),

(31), (26), and (32) are valid. Here, it must be considered that, in eq.(31),

the indices v are arranged in a different manner, namely, first the resonance

indices, then the exceptional indices, and finally the principal case indices.

In order to retain our above notations, we will replace eq.(31) Ly

_. vwv = mw, if v is the resonance index.

with (199)
Wv < my, if v is the exceptional index

Instead of eq.(29), we must then write

"60(t) - 2. $((,))(t) •th + * o. (200)

Similarly, eq.(19) is rewritten as

x(t) x W (201)

The order of increment of the investigated normal solution x(t) in eq.(32) will

be denoted by w so that, according to eqs.(33) and (34) but using our new nota-

tion, the following is valid:

W a Max > Max =Max ma,, = m.
(v, .( Res) ( es) (202)

Independent of (ne investigations, made at the beginning of this Section,

on the matrix 4°(t), •-e following statement can be made directly on the basis

of theorem 3. /145

Theorem 20: For a definite normal solution x(t) of eq.(l), relative to
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the power order of x(t), x'(t), ... , x"J)(t), ... , x('-(t), we will obtain a

broken curve of the following type:

Power orders

a 0~W

Fig.2

In the case t 0, only the horizontal at the height w remains. [Corresponding

patterns are obtained for all "x(t) at v = O0 1, ... , 1 from eq.(201) and the

pertaining derivatives.]

On the basis of the intuitive statements on the construction of the matrix

to(t), stricter statements can be made. Let j be located in the interval (195).

According to eqs.(23) and (25), we have the following for a resonance index or

for an exceptional index v.

RVA t. Cons. (t Y- o, 1,...4 (203)

[see eqs.(30) and (31)]. Consequently, in view of eq.(196), we have:

Theorem 21: For an index v ! 0, differing from y, all vx(• (t) for ýL

= 0, 1, ... , n - 1, have the same power order wv (see Fig.3). The same state-

Power orders
, r h)

%a

Fig.3
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ment applies also to the index v = y in the case of j = iyo This theorem /1l6

has its necessary complement in the following theorem:

Theorem 22: If, in the case j / iy [see eq.(195)], we have y ! 0, the

power orders of the derivatives yx(t) successively decrease by 1, beginning

with w, down to the order
-, Mmln(-, (2OLL)

after which they remain constant and equal to Wy - (j - iy) in the case of Wy

j _ iy while they will be equal to 0 in the case of wy 19 - iy (see Fig.4).

Power orders

Ed-

Fig.4

Proof: In eq.(199), according to eqs.(23), (24), (25), and (30) we have /1i4

O • ' t A , ( 2 0 5 )

Because of eq .(197 ), g19 ( 206)

WO•(t) . Const. for A'" o,1,...,j-i,-1. (206)

In the case of wy > j - iy, the coefficients ye (t) of t Y-uin ea.(199)

are constant for . = 0, 1, j - (iy * 1) according to eq.(197), with the
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w

coefficient of t Y being different from zero because of eq.(200). Conversely,

the coefficient of t -(J-iy) is not constant. An application of theorem 3 to

theorem 20 will demonstrate the correctness of theorem 22 for the case in ques-

tion here.
Wv-,

In the case wy ! j - iy, only the powers t with ii = 0, 1, ... , wy

Sj - iy with constant coefficients will occur in eq.(199), where again the co-

efficient of t Y differs from zero. From this, the statement of theorem 22

follows also for this case.

By means of theorems 21 and 22, the theorem 20 can be made somewhat more

rigorous. Let us investigate a certain normal solution x(t) of eq.(l). Since,

according to eq.(48), we have a.-S(t) 0 0, all derivatives x("k)(t) with k = J,

j + 1, ... , n - 1 have the same order of magnitude in accordance with theorem 4

(see also the remark made there). Consequently, only the power orders for k =

= 0, 1, ... , j remain to be discussed. Here, several cases must be differenti-

ated.

If we have the following in eq.(202) [see also eq.(195)]

S.... .(207)

or

j " nd siaultmeously j = it , (208)

then the highest coefficient To(t) in eq.(32) is not constant and all deriva-

tives x(k)(t)(k 0, l, ... , n - 1) have the same power order u* (see theorem 21).

Consequently, in Fig.2 we have 4 = 0. Figure 5 shows the power orders of the /i18

derivatives of x(t) as a dotted line and those of Yx(t) as a dot-dash line*.

if , (209)

* All quantities vx(t), not entered in the illustrations given below, yield
horizontals located below the dotted curve.
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then three additional cases must be differentiated.

a) An index V = r with r - 8 and r / Y exists, for which

WA a 0 W,(210)

Also in this case, the quantity To(t) in eq.(32) is not constant so that we

again have 4 = 0 in Fig.2. Now, Fig.6, in which rx(t) with its derivatives is

Power orders
(hi

(A f 1 1 '-0
9-r,'"I if iotir)

Fig. 5

plotted as a dashed line, illustrates the power orders of the derivatives.

b) If, in addition to eq.(209), the following applies for all indices v < B

differing from y Il2

Maxs, ''rC <'W' (211)

Power orders

(WA

"JA Jr (k)

Fig.6

then all Y8(t) for 6 = 0, 1, ... , - 1 in eq.(32) are constant, whereas Tt)

is not constant. Consequently, we have in Fig.2 t =y = Min (j - iy, aWy); see

also eq.(204).
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c) If at least one index q exists so that, in addition to eq.(209), we also

have > -, > - -,V > ' (212)

then wy - Wq is the smallest index for which TO (t) in eq.(32) is not constant.

Power orders

Fig. 7

Power orders

\%•Vk".....

Fig.8

This yields the pattern shown in Fig.8".

Section 10. Construction of Solutions x(t) of Eq.(l) in which a /150
Given Derivative has the Minimal Order

We will now investigate how high the power order of a singular solution of

eq.(l) must be in order that, at given k (k = 1, 2, ... , n - 1), the quantity

x(k)(t) has a minimal power order.

For this, a complement to theorem 19 is required, whose correctness can be

read from the matrix examples of theorem 19 in the same manner as the proof of

* With respect to b) and c) see theorem 21, in Sect.lO.
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theorem 19 itself. This can be formulated as follows:

Theorem 23: In the matrix f°(t), we have (see eqs.(160) and (191)]

if V ,,

I122)
if Do a 4 nd

{a i soIuld 70 (214)if WW ,J.

due to t r o i (216)

I ~ =(217)

In the cases (215), (216), and (217),. we have [['v]] [v]. For producing

the general proof, it should be stated that the zeros in eqs.(213) and (214) are

due to the permutation matrices Y8 while the negative terms in eq.(213) are due

to the superposition matrices ) The matrices (@ have no effect at all on

* In the case V = Y= 0, only (p((o)), 9(( ))+1, ... , ((o))+j-) (1, 0,
... , Os) remains of eq.(214) which means that, in the case j = 1, we only have
(cp((o))) = (l). The situation is similar for eq.(213).
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the matrices Vi*.

First, let us repeat Fig.l with respect to the minimal order of the deriva-

tives vx(k)(t) (see eq.(19)], with k as the abscissa.

Power orders •Power orders

* * I I 5

Ji ie
* S

Fig.9(a) Fig.9(b)

With a minor modification of eq.(186), we can then define:

" I' ", n - ,. . (218)
V so

where y is defined by eq.(195). Then, the relations (185) apply, provided

that X is substituted by y (see footnote on p.109); this had been taken into

consideration already in Fig.9. If we have

a . Vax C 9) . V (219)

then, according to the relations (185) modified in this manner, the minimal

orders of all derivatives x(k)(t) (k = O, 1, ... , n - 1) of a normal solution

x(t) of eq."1) are constant and equal to mv = m^. This constitutes no problem.

Then, only the case

a - Max (a,, I )a - (220)

remains to be considered. If y is the resonance index, i.e., if y = V, the

power order of the derivative x(k) t) of a normal solution is equal to the power

order my of Yxok) (t) according to Fig.9b. Accordingly, the only case of interest
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is that in which y represents the exceptional index, i.e.,

< (221)

If k • j - i= + 1, then 'xý ")(t) will yield the minimal power order of a normal
V

solution x(t) in accordance with Fig.9a. Information on the case

k > i - iq (222)

is obtained by the following theorem:

Theorem 24: If a given normal solution x(t) of eq.(l) is resolved, under

the assumptions of eqs.(195), (220), (221), (222) and in view of eq.(201), in

the following form

x(t) - (t) + xa t(t) (223)

with

M ,e- •t)/ (22h)

[see eq.(32)], in which case /153

[see eq.(150)] can be selected, then the constants vouy occurring in the vx(t)

of eq.(224) according to eq.(2 6 ) can be so modified that 10 (t), 'V1 (t), ... ,

-t),W are constant while T%(t) is not constant, with

S.,, - 1;. (226)

On substituting this modified function x*(t) in eq.(223), the quantity x*,(t)

can be so selected that the derivatives x(k) (t) of W = Wy from eq.(225), for

k - 0, will decrease with increasing k by 1 each time until the power order

M . Max(4-. M). (227)

is reached. In the case i- = AL, the decrease of the power order proceeds to
V

the -tth derivative with t according to eq.(226) while, in the case M = my = mV

it proceeds to the -t derivative with
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1= 1- (my - mv). (228)

Figures 10 and 11, in which x(t) from eq.(223) is shown as a dotted line,

illustrate the conditions stipulated in theorem 24: Fig.10 for the case - of

eq.(226) and Fig.ll for the case of eq.(228).

I Power orders

W M

...................

V-4 E-,, ( A)

"I ,, --- -f

Sm•,ntmo/ order of ,r('J)

Fig.10

Power orders

I -Frt.

'A)

ainta! order of ir(¢p)

Fig.10

Proof: First, it should be recalled that the summation indices + 1l,

S+ 2, ... , y which occur in eq.(224) in addition to v must be exceptional in-
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dices, which means that, for these indices, the constants v•_ in a normal

solution x(t) can be arbitrarily selected. Consequently, because of [see

eqs.(7h) and (150)]

we can select eq.(224) as the upper limit of the sum. If, analogously to

eq.(225), we assume for v v + 1, • + 2, ... , y - i,

•.-~~ ~ IV(.-- -. ( ,•, . (229)

and take into consideration [see eq.(150)]

- ---- "-:. ' ( -".) '(230)

then eq.(22/&) can be written in the form of

oe () = t W " 0' a

[see eq.(199) or (31)] with [see eqs.(26) or (2&)]

kG,.,,,-•.•.-•)• , �A 20.. ,

| ,W-1 ,,_ (232)

where the v(v)) (t) periodic with P and having a mean value zero can be selected

[see (Bibl.l) eq.(103)]. A comparison of the t-powers in eqs.(2211 ) and (231),

using the notations
- .fo ( 233 )

will yield = r-( ) f. (23

) , "" , • j, ,0 , ... , . ,. ,(234 )

which can be used only up to 6 = L, in which case any summands with 4v6 not de-

fined in eq.(233) must be omitted. It must be noted here that the quantities

(225) and (229) are the highest occurring exponents of t at eo0(t) or veo(t).
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In addition to eq.(206), we will also need the following relation which

has been obtained by means of eq.(214) from eq.(232):

ife >0
aith (235)

1,1 if

In the case m; = 0, the second sum of the second formula in the system (232)

will also occur in eq.(235) for 6 = 1, which must be specifically taken into

consideration later for eqs.(237), (241), (243), and (244). For 6 = 0, ... ,

j - iy - 1, eq.(206 ) is contained in eq.(235) since in that case, according to

eq.(235), the quantity lly 6 - r becomes negative, meaning that the sum does

not occur in eq.(235). This formula is applicable no matter whether j = iy

or j / iy, as can be confirmed by means of eqs.(214) and (215). /156

In accordance with eq.(232), we obtain for the remaining sunmmands in

eq.(231), i.e., for
V , .. -(236)

by means of eq.(213),

VA Aw

(237)

-Aw

Since, according to eq.(233), we have

I~ J'>i- i+,'>* i (238)

the sum does not occur in eq.(234) for the case that

f- o,1,...,j - - (239)
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so that here Y6 (t) according to eq.(235) [resp. eq.(206)] is constant*. Conse-

quently, we now need consider only

S- j - its j - i÷+ I .... , (240)

Next, we calculate, in accordance with eqs.(234), (235), and (237),

h =0 (241 )

.1 9r u)~ t ,/ o,

Then, we select the arbitrary d_, such that the parentheses vanish, i.e.,

/157
" 't 4-A ,, =V, Y -.-, V-,, (21,2)

where only eq.(27) for v = v must be taken into consideration. Then, the only

remaining terms of eq.(2Ul) are

A. 0

Here, the sum occurs only if [see eq.(231)]

i.e., because of eq.(226), if

Consequently, according to eq.(2141), the quantities To, T'i, ... , Yt-i are con-

stant while

is not constant [see eq.(198)]. In view of theorem 3 (or theorem 20) this

* At j = iy, these terms do not occur.
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proves theorem 24 under the additional stipulation that x*,(t) in eq.(223) con-

tains no t-powers higher than t", with M from eq.(227). For this, it must first

be established that no v of the series V + J, .. $ X can be a resonance index

and thus need not furnish any t-power. For such a v, according to eqs.(74)

and (150), we would have

which constitutes a contradiction to eq.(220). For the resonance indices of the

series X + 1, ... , 0, according to the definition in Section 4, the highest in-

dex has the greatest mn = m^ which means that, according to eq.(220), we must

have my < m=. Here, it should be noted that the case m = m; = my in eq.(220)V

had been taken care of already when treating eq.(219). This will immediately

produce the bound (227) since the indices v > 0 furnish only periodic components

to a normal solution x(t) of eq.(l).

As an application to theorem 24, we can use the example on p.109 with /158

j = y, in which case we can assume v 0, 2, 4 as resonance indices. We here

have
Y2, m- 7, 5 2 5, i. 3;

V r

so that, according to eq.(225), it can be computed that

W=W - 5 + (8 - 3) - 10

and, according to eq.(226)

1 - 8 - 3 5.

In Fig.12, the dotted line indicates the power order of the kth derivative

of the solution x(t) according to theorem 24, while the solid line shows the

minimal power order according to Fig.9a; the dot-dash line gives 2x(t). This

latter line generally also is valid for the solution (223) with u) from eq.(225),

i.e., for w = 10, and can drop below the value nr 7 only at a special selec-

tion of the constants vd•, for the selection (242), this can drop to the minimal
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order of A = 5.

So as to obtain an example also for the case (228), our above statements

are modified such that we lower nt = 6 and add v 5 as a resonance index to

Power orders

" " . s 1 -

weft.................................................

minimal order oar t

Fig.12

Power orders

~ .3. ~ minimal order of wAr

.e I

Fig.13

V = 0, 2, and 4. We now have again /159
. .(.D~ 10; 1 - 5,

V- 2, M.- 7, a. 5, whereas M . m, Mi 6

Consequently, we have in eq.(227),

M * Max (5;6) - 6

and, according to eq.(228),

1 5 - (6 - 5) =

14.2



The new conditions are illustrated in Fig.13.

Section 11. Method for the Formation of Examples /160

Theorem 25: The functions

y,*Ct) - 6" " Y0c^t) for ^- 1 .... In (245)

where the o (t) are n-times continuously differentiable and periodic with the

period P, form a fundamental system of a differential equation of the nth order

having coefficients periodic with P, provided that the Wronski determinant of

the functions yl, ... , y, differs from zero for each value of t within the in-

terval 0 1 t < P. Here, the matrix 91- (O)V(P) contains only elementary

components of the order 1.

Proof: Obviously, the functions y,,(t) satisfy the differential equation

of the nth order:
d , e•t I.. • t ,

Wq* t

If the exponential functions are canceled from the columns, a differential equa-

tion with coefficients periodic with P is obtained, in which case the factor of

the highest derivative which, except for the sign, coincides with the Wronski

determinant of the functions yi, *.., Y., according to definition is a continu-

ous function differing from zero. In addition, the following is valid for the

fundamental system:

].. - (247)

143L ""A 'ik
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1• L• a I,• I- •I (', •'|T- t flý 247)

1161

0 + (248)

From this, it follows that [see (Bibl.1), eq.(lO)]

W, (249)

Consequently, the matrix $ consists of elementary components of the order 1.

Theorem 26: The functions

(t)= C (f)

jr. ,'* ( -- )•j @: (250)

where the wj(t), ... , L(t), are m-times continuously differentiable functions

with the period P, form a fundamental system of a differential equation of the

mth order having coefficients periodic with P, provided that the Wronski deter-

minant of the functions yi(t), ... , y.(t) differs from zero for each value of t

within the interval 0 ! t 9 P. The corresponding matrix $ consists of exactly

one elementary component of the order m.

Proof: The differential equation of the mth order, which is analogous to

eq.(2A6), after reducing by eat and introducing the operator

D d (251)
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as well as the notation

W Wfor (252)

- summands in which the index cp ! 0 must be replaced by 0 - can be written in

the following form:

f0• o •, ,• o..o,--.0 :. • , :. -.t•,_ ,0(253)
S•J t) 3, q , ' ,"_ ,, ,J 4-0

The first row is obtained directly, while the other rows are obtained by com-

plete induction with reference to the row index. If the power factors are

eliminated by forming column combinations, a differential equation having co-

efficients periodic with P will be obtained. Again, the factor of the highest

derivative y(a)(t), except for the sign, is equal to the Wronski determinant of

the functions yl(t), ... , y.(t), i.e., is continuous and different from zero.

In addition, analogous to eq.(2!7), we have

,(254)

/1634, t�.J t ,•., 1"

"" ' t "

7" 't• tY' ,LJ *ti t"i . t14

• m~f , 145*zl *• •J ( -)



(P-i) ...- s,.t.,- 1 , (255)

(e.WW O .0Vt4 4J 04.00J -

From this, again in accordance with another paper [(Bibl.l), eq.(iO)], it

follows that

SI[ J(256)

Consequently, the matrix $ consists of a single elementary component of the /161

order m. Theorem 25 for ý, = 1 represents a special case of theorem 26 for mi 1.

From this, we directly obtain the following theorem:

Theorem 27: If, in forming the differential equation (2h6) or eq.(253)

from several function systems of the type of eq.(250), i.e., for example,

...... ;"'" -, Jd-ill,'"- + "

a differential equation of the order

n: ,- m. + m2 + . + MS

is obtained, with continuous coefficients P, and one matrix
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(257)

where *v is of the order my.

Section 12. Examples /165

Examnle 1: In accordance with theorem 26, with m = 2 and 1 = 0, we start

from the fundamental system

Y(1) - sint, 'yj]- t • sint - 3 coot + 1. (258)

These functions are solutions of the differential equation (see eq.(253) or the

formula analogous to eq.(246 )]

2 sint cost +. sint - ,+
3 sin2t - cos t (259)

S+ Co8
2

t

3 + sintt - cos t

in which the denominator is positive. The corresponding solution matrix 2(t)

reads
reA (sint 1-3 Costi (260)
14ýz(e I cos Jt

with

A*(o 1) (261)

The transposed reciprocal matrix "(t) (•- 1 (t)) will then be

4 sit C s in [ -1 0(262)

( [#.in, - cost oj
-- +3 Cost sin -t I

The elements of the last row

A -t, sin - 1+, cos (26s3)
) -+sin t - cost Cdz C3. +sin2t-cost
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form a fundamental system for the homogeneous differential equation adjoint /166

to eq°(259):

L 3 + sin2t -- cost + +t A sin t4cost (26!J

Next, we consider the solutions R(t) of the inhomogeneous differential equation

L•]J, i" 2 sint cost + sint 4, + * cosft 2-(t) (265)L+ sin 2t - cost 3÷sin t-cost

with

f(t) - 3 sin2 t - cost. (266)

Since we have a solution zti] , periodic with P, we can form the integral

/Z'(tt) f(t)dt . Jsintdt . o (267)

and find that, for the inhomogeneous differential equation (265), the exception-

al case is present. Then, the general solution i(t) is obtained in accordance

with the variational method for the constants [see eq.(18)], as follows:

2().-t sint + + cosst - cost)+
22•

+t " 0 sint + Co(1 3 cost) + lI. sint. (268)

with the derivative
X'(t) - - t cost - sin~t + t • 1co cost +

+1 Co .4 sin t + cI Cost.

If 1 co = 1 is selected, then •(t) is periodic with 2" at arbitrary 'cl. How-

ever, if 1 co / 1, the power order of •(t) will be MR = 1. Since the factor of t

in ^(t) is a nonconstant function, periodic with Z2, also the derivative x' (t)

has the same power order m' = m = 1 (see theorem 3, resp. theorem 20).

We then turn to the differential equation /167

L[Jr,] - i .It ,,. g 3 ,,t-t (269)
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at j m 1 which is transformed, with xý ) c, into the reduced differential

equation (265). First, we construct a fundamental solution matrix VI(t), accord-

ing to the method described in Section 5, for the differential equation homo-

geneous to eq.(269). By selecting successively j = 1, 2, 3, we obtain the solu-

tion matrices [see eqs.(l0), (109), (110)]

(270)

pi th aJntt. an

a I t

I t ,(271)

with #) e and L Die P

).] ~tJ ~~ * .. ~, ~(272)

Wi th !Vt= andA:

Here, according to eq.(260), we have /168

= [.,. ,(273)

Next, we determine the matrix M for the transformation [see eq.(123)]

which brings the matrix A to the Jordan normal form Ro. This then yields [see
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eqs.(148), (137), (146), (139)]

-.,x =. .lZ, s ,, (274)

-r "34 let (275)

(276)

.Li I

We use this for calculating the new fundamental systems (see eqs.(124) and /169

(192)] !T z,. 0t* , 0 t -7

w I-CotI r"

1 If #*•. I •~ -~ L-

:..• t ,(277)
t I cot t 1

1 tI

_• : : (278)

o •t o t!-•t 0 10;1t 0 t

C.0) - -~ t • t 0 ' (279)

__.;_t• : *&;.t 1- ,t1 t
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In eq.(277), it must also be noted that

j = 1, i1 = 1, i.e., j = ii, Y = 1 [see eq.(195))

We read from this:

This result coincides with theorems 19 and 23. Analogously, the following is

valid with respect to eq.(278):

j = 2, j > i 1 , y I.

Equation (278) indicates that

- -;..t /170

tw r

This result also coincides with theorems 19 and 23. With respect to eq.(279),

we have

WW I , 6 1v-,

which again coincides with theorems 19 and 23.

The reciprocal transposed matrices, conjugate with eqs.(277) - (279),

will then read

I (281)

1514-t
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,t-a-'. * 0 t'st-4 pt-A ~ to-'' 4' -"11tI4.i-4 --t

44

-€ *

ia-t 1

From this, one can read from the last row

"z 2 sin t - 4cst + cos2t) for J-1,2,3, (283)

i.e., independent of j in accordance with the proof of theorem 14. The corre-

sponding periodic solution zEE1 3 j, in all three cases, will be (see theorem 13)
A Sin t

V11z DI 3. sin~t - cos t (284)

Naturally, the function ZLo03J can also be calculated in accordance with the

formula (163):

3M ( *t71 Or'.7 t19 (285)
In accordance with the last row of the matrix Y [see eq.(262)], we have the

functions - + 3 cos t A sin t
'to) - 2 snt cos - n ]T=3 + in- cost 3+sin t-cost

and, in accordance with the jth power row of the matrix • [see eqs.(270)-(272)1,

the functions
Yj ) -- Cost and rj. •- -2 . sin t.

As readily verified, this will also yield eq.(283).

In addition, it is possible to read from the representation of eqs.(277) /172

to (279) resp. eqs.(280) - (282), the orders my of the elementary components,

resulting in the scheme
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T - 0O 1 2 J J >2

"o 0 1 1 (286)
Ml1 2 2 3 4 J + I

which coincidez, accurately with the scheme of the minimal orders for the reso-

nance subcase [see eq.(185)].

For our special case (266), the quantity v = 1 in accordance with eq.(267)

is the exceptional index. Conversely, a computation of the integral [ see

eq. (283)] IT

Jf ,..g W ;,., •t = #7o, (287)
0

shows that v = 0 is a resonance index.

Naturally, instead of eq.(287) one can also calculate (see theorem 18) the

integral

41~

by means of the solution

X(t) 4 cost + cos2t see eq.(268)
S( 288 )

wtith IC 1)

of eq.(265), periodic with 2rr. In this manner, the following sequence of values

is obtained for the overall minimal power orders of the solutions x(t) for j =

0, l, 2, 3, etc.:
M = oi,,, etc. (289)

The general solution x(t) of eq.(269) can be determined in two different ways:

either by a successive integration, starting from ý(t), to eq.(288) or by /173

constructing a particular solution in accordance with the method of variation of

the constants on eq.(2 6 9) and adding the general solution of the conjugate homo-

geneous differential equation which must be taken from the matrix 9f(t) [see

eqs.(277) - (279)].
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By successive integration of eq.(268) (Q 1 i, 2, 3), we obtain the solutions

I I1 x(t) - t 4 + cost) - (2 Sint -~ sin2t)+

t cO (I - cost) + (-21c0 aint I cl cost + a,),
t21

21 x(t) j -. -t t Sint + (3 coat co,2t) +

t 21 + t(a 1 - Ic Sint) I(c cost- cI sint+a2 )I (290)

I
1 - 3 x(t) - - t coat + (4 Sint - sin2t) +

t30c + t 2

-T 0 a7 + t( co cost + a2 ) + ( Iccost + a 3 ).

The variational method for the constants, using the argument

x(t) - °x(t) + Ix(t) (291)

and [see eq.(20)]

x(t) : J(t) f ýt) (t)dt far v- o, (292)
,*- Iv

would yield

j = 1 1c (,-vt) - - . -t + "C ' (1-c t), (293)

X~~ (1+~E- -- 0 .11... t - PC, OCE . t

which coincides with the first equation of the system (290) when taking into /iW

consideration that 1co, Ic1 , and cl, or al are arbitrary constants. Analog-

ously, we obtain for
ox(t) - Sint 4 t - 4 Sint + sin2t + °Cl).

22 (29)
4 sin2 t - 1int. sin2t) + - " +

tClcl - 100 Sint) + (co 0 cost -
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1 f1 Silt * 1@2)9

t2I
(t) 7r + t Sint + 3 0cost - coaot)

t2•- •c 1+0 t 4101 c -1OSint) +

+2 7- 0 c 1  0 mn)

oo10 cost - -01) Sint + 1 c2

and for

Xt) . - cost 4• t - 4 Sint + .in2t + 1,

11(t) - j(•-+÷ t cost) + Sint-

lin2t + uin2t cost +

1 t3tcs I ot2

.CAT + t*c . (c cost) A + cos) +

Again, we obtain coincidence with the two last relations of the system (290). .L175

Solutions with the indicated minimal order (289) are readily constructed

Isee eqs.(293) - (295)]:

For j = 0, we only must put (as already known) c = 1 in eq.(2 6 8).

For j = 1, the selection of constants in eq.(290) is arbitrary.

For j = 2, we put id co wi while the other constants are arbitrary.

2
For j = 3, we put 1 co - a ci = 0, while the other constants

2

are arbitrary.

If we start from a fixed solution x(t), power orders are obtained for the

sequence of the functions x(t), x' (t), x,,(t), xT"(t), etc., whose patterns can

be determined in accordance with eq.(290). Let us consider the case j 3 and
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select a definitely determined x(t), resulting in the power orders of the deriv-

atives xkk)(t) for four different cases as shown in Figs.14 - 17 [see eq.(295)].

In all these cases, the following is valid:

j = 3, ii = 1, y = 1 [see eq.(195)] (296)

ub = =1 [v = 0 resonance index, see eq.(287)]
5I

Case I: c1 + 5 0.
2

Here, we have i = 3, 't= j - iy = 2 [see eqs.(204) and (296)]. The per-

taining pattern corresponds to Fig.?.

/176
Power orders

*= I=3

Fig.i4

Case II: Aco + 0= , but 'c, t 0.
2

Here, we have w, = 2, -ty = 2.

The following pattern corresponds to Fig.8:

SPower orders

, "-

4 j-J3 Ew

Fig.15

Case III: 1co + 5= 0, 1ci = 0, and I c2 arbitrary.
2

Here, we have w1 = 1, y = -1 = Min (j - ii, w,) = 1in. (2, 1) = 1 [see

eqs.(204) and (296)].
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In accordance with Fig.6, we obtain here

l Power orders

*I Je Jg uIs

Fig.16

Case IV: 'co - 1 0, and the remaining c arbitrary. /177

Here, we have

"• = - , i . j - i¥-2,

o (see eq.(220)), i,,. io . o (see ,q.(15 2 )),

.,-, .W . I (see eq.(296)), (297)

1 - j - i . 3 - o - 3 (see eq.(226)).

The constant 'co is so selected that [see eq.(291)] the coefficient of t van-

ishes in the sum xt"(t) 0 °wt(t) + 'x"'(t) (see theorem 24).

Power orders

.U.- i . . . . (.'• .. -

"".j-3 II L

Fig.17

See also Fig.l0.

In this case, the condition (242) must be satisfied. We will check this

conr1ion; the only remaining item is

° o . (29S)
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where Ido is the coefficient of the highest power in Ix [see eqs.(122) resp.

(199) and (26)], i.e., -- co according to eq.(295), whereas ode is the con-2

stant factor of the highest power in 0 x(t), i.e., equal to 7 according to
2

eq.(295). In accordance with eq.(203) resp. (26), the coefficient of 0 x(t) can

be computed [see eq.(279)]:

"0o(t)- 08o(t) - °do ). °do ( -- cost),

so that, necessarily, Oe = o . Consequently, the condition (298) reads as
2

follows: : .fls5 + (b =--,7 which yields Icb = 1 /178
2 2

as had been assumed above, for the case IV.

The four traces from Figs.14 - 17 are compiled in Fig.18, together with

the minimal solution of Fig.18 (the latter is shown as a solid line).

Power orders

Fig.18

It is readily demonstrated that all possible cases are covered by the

cases I - IV. No solution x(t) exists which, simultaneously with all three

derivatives x' (t), x"(t), and x"T(t), would have the corresponding minimal

order, as represented in Fig.18 by the solid line.

As a second example, we will consider the differential equation

x(J+3)+ 2 cost x(J+2)+ x(J÷1)÷
(299)

2 cost X(J) - f(t) (j 0o)
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with two different right-hand sides: /179

(a) f(t) - sint (2 sint - 3),
(b) f(t) - (sint - 1) (2 sint - 3).

The general solution of the inhomogeneous reduced differential equation (j = 0)

has the following form: (t) - •'t) + c% •( 1 )(t) 3 W c0 I 13 (t)

2 l( 2 )(t) (3o)

with
Y(1)Wt) - )t) - cost,

S13 (t) - t • Q t) M+ 10 3 t) M

t cost +3 sint + 1), (301)

Y( 2 )(t) - '( 2 )(t) - sint.

According to theorems 25 - 27, as already expressed in the notation,

MI 2, A2 . 1, i= " 1, 12 is nonexistent,

St.1 "(2 0o

If cost, E13i= j sint + 1, (2) = sint.

Further, for the case (a) we calculate
¢(t) - t(i sint - cost) + (303)

sint + 3 cost + 2 sint cost - 3)

and, for the case (b), A* /180
x (t) F- cost + t (sint - cost + 3) +

(3O4)
11 8 2

t(" cost - slat + sint cost-3

By meanrs of the matrix ~() ('()~ the following is obtaineci:

(1) _t101]+ tl) t 5
(305)

2ol, sint cot

ZE,1"IE-]" 2 sit - 3
A
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l• • 1 + tin+ coo2 t

LC23"to- 2 s in -

For the case (a), this will yield

J 3(t) f(t)dt a - 3 sint dt - o
* 0

v- I exceptional index

Sa(306)

ES (tf t~d - sint.(1+3 sint + Cos t)dt
0 =wvo, V- 2 resonance index

and, for the case (b),

A Ct)f (t)dt - - 3 -f (it 1"(in- d

a6V 7o, 0- 1 resonance index
and . (307)

C93 (t)f (t)dt fJ (sint - 1)C1+3 sint + cos t)dt
* o

NO, V. 2 exceptional index

The solution zE[o~j (t) is calculated according to the formula (163):

Z (t) -- t -LZjCJ1T,,j1t ~) (308)

The still to be determined functions jco(j) ' , , iCP(2) are defined as func- /181

tions with zero mean value from the system of differential equations (97) which,

in our case, has the following appearance:

As solutions, we obtain

) -5 t) 160 0
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On substituting this, together with eq.(305), into eq.(308), we obtain

"i0" - & cStjint co3 t. (310)

In addition, according to eqs.(162) and (305), we have

z u _ (311)z[l- 102 •) . 3 "E1 2 s int' -3

as well as
A 1 + 3 sint + cos 2 t

z023 ] Z 2J s I 23 & Sint - 3 (312)

In both cases (a) and (b), the exceptional case exists for v = 0.

Thus, the scheme of the minimal orders, according to eq.(185), will be

II__ .=0 7F727 4 j>4,2

Mo 0 1 1 1 1 1

M1 2 2 3 4 5 3.

M2 1 1 1 I 1 I

From this, in the case (a), we obtain for j = 0, 1, 2, 3, -.. the sequence /182

of minimal orders [see eq.(184)1:

"M " M2 " ,,,,...(313)

In the case (b), we obtain accordingly

M.- . 2,2,939,4... (314)

Then, we determine the general solution x(t) for j = 4, yielding:

In the case (a):

x(t) - - S t(• sint - cost) + (I sint +

It4 0) t2
+ .Cos t + W-sin2t) + lc 0 U + al 3 + a2 2T +

+1 1c Ic s+a I 1 '1 1ttlCo 0 * Cost + a3 )+ (- cosint + c1  c cost +

42cI sint .

In the case (b):
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t5 t 4  t 2

X(t) . T - t 4 + *T cost + t (- 3 Sint - cost) +

Sint - cost + 16 sin-t)+ 1I C - + a 0

sin~) + 1 CSint + ,~
t&2 7T + t (lcl " 1 cost + £3) + (-1c1 s

In the case (a), four subcases must be differentiated:

ICO - 5#o,

1Co - 3 - o, buot a£P 0,

Co -3-0bu&,o
I% .a 01 but &2oo,

c - 3 - o a2 a o,

from which the following curves for the power orders, analogous to Fig.18, are

obtained:

Power orders

I L

S f * 5 ~3 5zf V W-1i

Fig.19

In the case (b) only one possible case exists with arbitrary constants,

yielding the pattern shown in Fig.20:

Power orders

I) • Z ,t *in# r" -lei
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It should be mentioned, in addition, that it would not have been necessary

in the above examples to check the index v 0 as to resonance since the minimal

order ub can never be greater than m, or nm.

Example 3: As the third example, let us consider the differential equation

x(J+3)_ 4 + sin2t + 2 cos2t Q+2)" sin2t + +

(315)
6 + 2 cos2t - sin2t x(j.l) + sln2t - 6)Ssin2t +s+ n2 Z.f j

with the right-hand sides /184

(c) f(t) - cost (4 + 2 sint cost),

(d) f(t) - (4 + 2 siat cost).

The general solution of the inhomogeneous reduced differential equation has the

following form:

XCt) = (t) + C 2 yoI)C M +ct IY t) + 2c Y(2 )(t) (316)

with Ac)t W M()• - cost
yA

7 Y13(t) - t ¶(1)(t) +1÷0 1 (t)-tcost + sint (317)S2 (t) - 2(t) • et at$

where, in the case (c),

0(t * - a t c2st - t Icost, +7Sint) +

*(! sint -11 cost - 4 .•.•, - (318)

- cos3t Sint coset - si2t cost)

and, in the case (d),

8 8 *t cost +-Sint + sin2t -

x Ct) *•) (3+ )

cos2t - sin 2t (319)

Thus, we have M^2 = 2, iL = 1 in which case, for v = 2, the principal case

is present; for v 1, no il exists. For the matrix A(t) = -t)),
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Ssint + cost +
(1) - t( 1 + 1(1) - t .42 sint cost

tsint - 2 cost4sint2 cost (320)
sint + cost2 E1ll E13= - 4 --- 2 sint cost

S + 2 sitcse- 1 + cos 2 t e-t

4 + 2 sint cost

In the case (c), we calculate /185

"XrEdt) f(t)dt - - J (sint + cost) cost dt

s-U • o, •'. i resonance index

and, in the case (d),

z 2tlj(t) f(t)dt - -j (sint + cost)dt = o,
0 V1 exceptional index (322)

For the orders of the elementary components with variable J, we obtain the scheme

J a.o 1 2 3 j1>o

m o 1 2 3 J

mI 2 2 2 2 2

m2 1 1 1 1 1

In the case (c), we obtain v = 1 as the resonance index. For establishing that

v = 0 is the exceptional index, it is only necessary to determine Zf[o]J which,

according to eq.(163), yields
-- 2 + 2 sint cost[ZEo] 1 4 + 2 sint cost

which means that v = 0 is the exceptional index. According to eq.(184), the

following values are ottained for the minimal orders:

"n - 1 -2,2,2, etc. (323)

Thus, in analogr to Fig.18, the pattern shown In Fig.21 will be obtained.
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Power orders

4 I

Fi g. 21

For each curve, a normal solution x(t) can be defined. /186

Case (d): With the period P = 2r, the quantity v = 0 is the resonance

index, v = 1 the exceptional index, and v = 2 the principal index. Since, for

the reduced differential equation, the resonance case does not exist, the follow-

ing can be calculated according to theorem 18:

z901(t) f(t)dt - x(t)dt - -V4.l# o

with the solution R(t), periodic with 2r [see eq.(316)] atC --- and
15

Ici = 1. For the minimal orders, the following values are obtained:

m - mO . o,1,2,3, etc.

For the power orders with two case differentiations, the pattern of all possible

cases is obtained. (In the dotted curve, w, = 1 has been assumed while, in the

Poer orders

Fig.22
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dashed curve, the minimal solution w, 0 has been assumed.)

Example 14: In the differential equation /187

x(J+c)+ sint x(j+3) + 4 cost x (j+2) +
S+ -cost 2 + cost

* cot 2 cost

sint x 4Jco t x(j). - 2(2+cost)T + -cost 2 +2cost-

with j - 0 which, for j = 0, has the general solution

A t2
X(t) T cost + t sint + 2 cost - 2 +

7T 7 (325)
1co0 (t sint + 1) + c1 sint + 2c 1 " t cost + 2c 2 .cost

we obtain

1 (1) sint, 13',' "1( 2= cost, ([23 o

S A (326)
m1 . 2, m2 = 2 mit i I and i 2 is nonexistent,

Here, our scheme for the minimal orders reads

jo . 2 3 i >0

m 0o 1 1 14
mI 2 2 2 2 2

m 2 2 2 2 2 2

According to eqs.(164) and (166), we calculate

sint J_ 2 cost + , (327)
z11= = (2+cost) z 'A23 2(2 + cost(

This will yield

j ^jjt)f(t)dt = 2 r int dt =o
and (3 28)

I z[2](t) f(t)dt - (2 cost + 1)dt = 2 ,1f o.

Consequently, the exceptional case is present for v 1, while the resonance

case occurs for v = 2. Thus, the overall minimal order [see eq.(184)J will

be m = Max(mv) = 2 for all j. Here, it is of no importance whether v = 0 is /188
(Vres.)
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the resonance index or not (see case IV on p.108). All solutions x(t), no

matter how large j might be, show the same behavior with respect to the sequece

of the power orders of x, x?, x", etc. This will yield the pattern shown in

Fig.23.

Power orders

S. ..... ..... ....

Fi g. 23

As a final example, let us consider the general differential equation with

constant coefficients L [;J t •(n-j) a (n-j-1)
I, -(n-j), n-j X-1t

Caj * o), (329)

where f(t) is to have the period P. It can be readily proved that all solu-

tions, periodic with P, of the reduced homogeneous differential equation are

functions with a mean value of zero. If, namely, a function -(t), periodic

with P, is introduced into the homogeneous reduced differential equation, all

terms which are multiplied by the derivatives P', Y",..., , have a mean

value of zero. Consequently, also the last term, a,-jyA(t), must have a zero

mean value.

It follows from the above statement that the functions /189

A

(t) . y(v)Ct) ( v .,*, [see, for example, eq.(250)]

have a mean value of zero. We must now prove that all functions ^, (t)(4 = (v) +

+ i, ... , [v]; v = 1, ... , ^) must have a mean value of zero.

For example, the differential equation, homogeneous to eq.(329), is solved
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by means of the argument y(t) = ea*t. This is assumed to yield the character-

istic equation .o (330)

with pairwise different values a, ... , 01i where, in addition to a complex a

also the conjugate-complex root Y occurs. Then, the general solution of the

differential equation homogeneous to eq.(329) will read

(t : (331)
VWW

where Pv(t) represents an arbitrary polynomial of the degree MV - 1:

cot-V V (332)

The differential equation, homogeneous to eq.(329), has solutions with the

period P exactly when the solutions cV, ... , Y) of the characteristic equation

2rri
(330) contain whole multiples of P. Let us assume that this is true for

* * * 2rri
the values C1, 0.., vi while the remaining a. are no whole multiples of - .

We repeat here that O•v t 0 since, otherwise, the differential equation homogene-

ous to eq.(329) would have to have a constant solution which contradicts the

stipulation of a,-j t 0. For the eigenvalues Ot(v = 1, .. ,, A ... , s), the

following bound [see (Bibl.l) eq.(20)]

iT(333)

at first, is rot valid. Generally, we put
= (~=~--4~-.~)/190

+ (3313

According to eas.(331), (332), and (334), the first row of the fundamental

solution matrix Ot) has the form,

'I'"A. (335)

with
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AT (p, t -e" t

"V (336)

e
I

7 T

[see eq.(95)]. From this, we obtain directly

If , ,(V )o,,e1, .... f,(or.(-,337)

That 1(v)(t) (v = 1, ... , P) has a mean value of zero was determined above;

naturally, the remaining ^ = 0 also have a mean value of zero.

The above statements yield the following theorem:

Theorem 28: In the case of a differential equation with constant coeffi-

cients, no iv exists.

Consequently, the matrix P =0o automatically is in the Jordan normal form

[see eqs.(llh), (123)]; for the transitory transformation matrix, G = ( is

valid.

Consequently, the scheme for the minimal orders has the following form:

- /191
S1 2 3 j>o

mo o 1 2 3 j

A A A AMi '•I Mi Mi M MI (338)

2 m2 a2 M2 r02 m 2

m• m mA m• mA m•

In general, at low values of j and if the resonance case is present for the

reduced differential equation, the resonance subcase cannot be of any sigifi-

car-ce Vor the index v = 0. However, as soon as j is sufficiently large, mo will
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predominate over all other orders mi, ... , m4 and it becomes of importance to

determine whether v = 0 is a resonance index or not. For this we need the solu-

tion zE0o1 (t), periodic with P, of the adjoint homogeneous differential equa-

tion, which already is defined for j = 1,

dt i(339)

First, we will demonstrate that zcEojj (t) must be constant. For this, we start

from eq.(329) with f(t) of zero mean value. By j integrations and making use

of the auxiliary theorem in Section 3, we obtain an equation

L (x],x(n) + a1 x (n-) +...+ a nj X(j) F (t) (340)

with an F(t) of zero mean value. Since i(t) has the power order of

SM

the same power order will be valid also for x(t). Since we have H0 = j in ac-

cordance with eq.(338), it follows that v = 0 is the exceptional index for j >

> ME. Consequently, it then is necessary that

f DOWt.o t ,d- :0 (341)

/192
The assumption

z[d(t) - k + ;D 0 ~(t (342)

with ýEto• of zero mean value and constant k would lead to a contradiction

with eq.(34l) if

F(t) = Eco,] (t)

is selected. Therefore, it is obvious that in eq.(342), we have zEcoj] (t) 0.

The constant k is determined in accordance with eq.(174) as

zf[,(t) - k - I (3 )
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From eq.(179) we then find that v = 0 is the resonance index for the differ-

tial equation (329), provided that f(t) has a mean value differing from zero

and will be the exceptional index if the mean value of f(t) is zero (see also

footnote on P.35).
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